About this Journal Submit a Manuscript Table of Contents
International Journal of Inflammation
Volume 2012 (2012), Article ID 697592, 9 pages
http://dx.doi.org/10.1155/2012/697592
Review Article

The Immune Response: Targets for the Treatment of Severe Sepsis

1Division of Critical Care, Department of Pediatrics, University of Colorado School of Medicine, 13121 E 17th Avenue, MS 8414, Aurora, CO 80045-2535, USA
2Division of Pediatric Critical Care, Children's Hospital Colorado, 13123 East 16th Avenue, Aurora, CO 80045, USA
3Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Medical Center North, Vanderbilt University, Room T-1208, Nashville, TN 37232, USA

Received 3 September 2012; Accepted 6 November 2012

Academic Editor: Paulo Roberto B. Evora

Copyright © 2012 Aline M. Bernard and Gordon R. Bernard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. W. Rice and G. R. Bernard, “Therapeutic intervention and targets for sepsis,” Annual Review of Medicine, vol. 56, pp. 225–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. S. Hotchkiss and I. E. Karl, “The pathophysiology and treatment of sepsis,” New England Journal of Medicine, vol. 348, no. 2, pp. 138–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. L. P. Skrupky, P. W. Kerby, and R. S. Hotchkiss, “Advances in the management of sepsis and the understanding of key immunologic defects,” Anesthesiology, vol. 115, no. 6, pp. 1349–1362, 2011.
  4. R. P. Dellinger, M. M. Levy, and J. M. Carlet, “Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008,” Critical Care Medicine, vol. 36, no. 1, pp. 296–327, 2008.
  5. A. Kotsaki and E. J. Giamarellos-Bourboulis, “Emerging drugs for the treatment of sepsis,” Expert Opinion on Emerging Drugs, vol. 17, no. 3, pp. 379–391, 2012. View at Publisher · View at Google Scholar
  6. M. P. Fink, “Adoptive immunotherapy of gram-negative sepsis: use of monoclonal antibodies to lipopolysaccharide,” Critical Care Medicine, vol. 21, supplement 2, pp. S32–S39, 1993. View at Scopus
  7. E. J. Ziegler, C. J. Fisher, C. L. Sprung et al., “Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial,” New England Journal of Medicine, vol. 324, no. 7, pp. 429–436, 1991. View at Scopus
  8. R. L. Greenman, R. M. H. Schein, M. A. Martin et al., “A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis,” Journal of the American Medical Association, vol. 266, no. 8, pp. 1097–1102, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. R. C. Bone, R. A. Balk, A. M. Fein et al., “A second large controlled clinical study of E5, a monoclonal antibody to endotoxin: results of a prospective, multicenter, randomized, controlled trial,” Critical Care Medicine, vol. 23, no. 6, pp. 994–1006, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. Alejandria, M. A. Lansang, L. F. Dans, and J. B. Mantaring, “Intravenous immunoglobulin for treating sepsis and septic shock,” Cochrane Database of Systematic Reviews, no. 1, p. CD001090, 2002. View at Scopus
  11. D. C. Angus, M. C. Birmingham, R. A. Balk et al., “E5 murine monoclonal antiendotoxin antibody in gram-negative sepsis: a randomized controlled trial,” Journal of the American Medical Association, vol. 283, no. 13, pp. 1723–1730, 2000. View at Scopus
  12. R. V. McCloskey, R. C. Straube, C. Sanders, S. M. Smith, and C. R. Smith, “Treatment of septic shock with human monoclonal antibody HA-1A: a randomized, double-blind, placebo-controlled trial,” Annals of Internal Medicine, vol. 121, no. 1, pp. 1–5, 1994. View at Scopus
  13. R. Salomao, P. S. Martins, M. K. Brunialti, et al., “TLR signaling pathway in patients with sepsis,” Shock, vol. 30, supplement 1, pp. 73–77, 2008. View at Publisher · View at Google Scholar
  14. T. W. Rice, A. P. Wheeler, G. R. Bernard et al., “A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis,” Critical Care Medicine, vol. 38, no. 8, pp. 1685–1694, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Annane, E. Bellissant, P. E. Bollaert et al., “Corticosteroids in the treatment of severe sepsis and septic shock in adults: a systematic review,” Journal of the American Medical Association, vol. 301, no. 22, pp. 2362–2375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. B. M. Batzofin, C. L. Sprung, and Y. G. Weiss, “The use of steroids in the treatment of severe sepsis and septic shock,” Best Practice & Research, vol. 25, no. 5, pp. 735–743, 2011.
  17. L. Cronin, D. J. Cook, J. Carlet et al., “Corticosteroid treatment for sepsis: a critical appraisal and meta- analysis of the literature,” Critical Care Medicine, vol. 23, no. 8, pp. 1430–1439, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Annane, V. Sebille, C. Charpentier, et al., “Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock,” Journal of the American Medical Association, vol. 288, no. 7, pp. 862–871, 2002. View at Publisher · View at Google Scholar
  19. C. L. Sprung, D. Annane, D. Keh, et al., “Hydrocortisone therapy for patients with septic shock,” New England Journal of Medicine, vol. 358, no. 2, pp. 111–124, 2008. View at Publisher · View at Google Scholar
  20. B. P. Markovitz, D. M. Goodman, R. S. Watson, D. Bertoch, and J. Zimmerman, “A retrospective cohort study of prognostic factors associated with outcome in pediatric severe sepsis: what is the role of steroids?” Pediatric Critical Care Medicine, vol. 6, no. 3, pp. 270–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Qiu, X. Cui, A. Barochia, Y. Li, C. Natanson, and P. Q. Eichacker, “The evolving experience with therapeutic TNF inhibition in sepsis: considering the potential influence of risk of death,” Expert Opinion on Investigational Drugs, vol. 20, no. 11, pp. 1555–1564, 2011. View at Publisher · View at Google Scholar
  22. K. Reinhart and W. Karzai, “Anti-tumor necrosis factor therapy in sepsis: update on clinical trials and lessons learned,” Critical Care Medicine, vol. 29, supplement 7, pp. S121–S125, 2001. View at Scopus
  23. E. Abraham, R. Wunderink, H. Silverman et al., “Efficacy and safety of monoclonal antibody to human tumor necrosis factor α in patients with sepsis syndrome: a randomized, controlled, double-blind, multicenter clinical trial,” Journal of the American Medical Association, vol. 273, no. 12, pp. 934–941, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Cohen and J. Carlet, “INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-α in patients with sepsis,” Critical Care Medicine, vol. 24, no. 9, pp. 1431–1440, 1996. View at Scopus
  25. E. Abraham, A. Anzueto, G. Gutierrez et al., “Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock,” The Lancet, vol. 351, no. 9107, pp. 929–933, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Reinhart, C. Wiegand-Löhnert, F. Grimminger et al., “Assessment of the safety and efficacy of the monoclonal anti-tumor necrosis factor antibody-fragment, MAK 195 F, in patients with sepsis and septic shock: a multicenter, randomized, placebo-controlled, dose-ranging study,” Critical Care Medicine, vol. 24, no. 5, pp. 733–742, 1996. View at Scopus
  27. K. Reinhart, T. Menges, B. Gardlund et al., “Randomized, placebo-controlled trial of the anti-tumor necrosis factor antibody fragment afelimomab in hyperinflammatory response during severe sepsis: the RAMSES study,” Critical Care Medicine, vol. 29, no. 4, pp. 765–769, 2001. View at Scopus
  28. E. A. Panacek, J. C. Marshall, T. E. Albertson et al., “Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab′)2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels,” Critical Care Medicine, vol. 32, no. 11, pp. 2173–2182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. T. W. Rice, A. P. Wheeler, P. E. Morris et al., “Safety and efficacy of affinity-purified, anti-tumor necrosis factor-α, ovine fab for injection (CytoFab) in severe sepsis,” Critical Care Medicine, vol. 34, no. 9, pp. 2271–2281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. C. J. Fisher Jr, J. F. A. Dhainaut, S. M. Opal et al., “Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome: results from a randomized, double-blind, placebo-controlled trial,” Journal of the American Medical Association, vol. 271, no. 23, pp. 1836–1843, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. S. M. Opal, C. J. Fisher, J. F. A. Dhainaut et al., “Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial,” Critical Care Medicine, vol. 25, no. 7, pp. 1115–1124, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. G. R. Bernard, “Statins for acutely hospitalized patients: randomized controlled trials are long overdue,” Critical Care, vol. 14, no. 2, p. 141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Christensen, R. W. Thomsen, M. B. Johansen et al., “Preadmission statin use and one-year mortality among patients in intensive care-a cohort study,” Critical Care, vol. 14, no. 2, p. R29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Björkhem-Bergman, P. Bergman, J. Andersson, and J. D. Lindh, “Statin treatment and mortality in bacterial infections—a systematic review and meta-analysis,” PloS one, vol. 5, no. 5, p. e10702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Janda, A. Young, J. M. FitzGerald, M. Etminan, and J. Swiston, “The effect of statins on mortality from severe infections and sepsis: a systematic review and meta-analysis,” Journal of Critical Care, vol. 25, no. 4, pp. 656–e7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Y. Tseng, P. J. Hutchinson, M. Czosnyka, H. Richards, J. D. Pickard, and P. J. Kirkpatrick, “Effects of acute pravastatin treatment on intensity of rescue therapy, length of inpatient stay, and 6-month outcome in patients after aneurysmal subarachnoid hemorrhage,” Stroke, vol. 38, no. 5, pp. 1545–1550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Abraham, K. Reinhart, S. Opal et al., “Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial,” Journal of the American Medical Association, vol. 290, no. 2, pp. 238–247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. B. L. Warren, A. Eid, P. Singer, et al., “Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial,” Journal of the American Medical Association, vol. 286, no. 15, pp. 1869–1878, 2001. View at Publisher · View at Google Scholar
  39. G. R. Bernard, J. L. Vincent, P. F. Laterre et al., “Efficacy and safety of recombinant human activated protein C for severe sepsis,” New England Journal of Medicine, vol. 344, no. 10, pp. 699–709, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. V. M. Ranieri, T. Thompson, P. Barie, et al., “Drotrecogin alfa (activated) in adults with septic shock,” New England Journal of Medicine, vol. 366, no. 22, pp. 2055–2064, 2012. View at Publisher · View at Google Scholar
  41. S. Nadel, B. Goldstein, M. D. Williams et al., “Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial,” The Lancet, vol. 369, no. 9564, pp. 836–843, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Yamakawa, S. Fujimi, T. Mohri et al., “Treatment effects of recombinant human soluble thrombomodulin in patients with severe sepsis: a historical control study,” Critical Care, vol. 15, no. 3, p. R123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. M. Lin, Y. M. Wang, H. C. Lin et al., “Serum thrombomodulin level relates to the clinical course of disseminated intravascular coagulation, multiorgan dysfunction syndrome, and mortality in patients with sepsis,” Critical Care Medicine, vol. 36, no. 3, pp. 683–689, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Venet, R. Gebeile, J. Bancel, et al., “Assessment of plasmatic immunoglobulin G, A and M levels in septic shock patients,” International Immunopharmacology, vol. 11, no. 12, pp. 2086–2090, 2011. View at Publisher · View at Google Scholar
  45. K. G. Kreymann, G. De Heer, A. Nierhaus, and S. Kluge, “Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock,” Critical Care Medicine, vol. 35, no. 12, pp. 2677–2685, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. K. B. Laupland, A. W. Kirkpatrick, and A. Delaney, “Polyclonal intravenous immunoglobulin for the treatment of severe sepsis and septic shock in critically ill adults: a systematic review and meta-analysis,” Critical Care Medicine, vol. 35, no. 12, pp. 2686–2692, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. A. F. Turgeon, B. Hutton, D. A. Fergusson et al., “Meta-analysis: intravenous immunoglobulin in critically ill adult patients with sepsis,” Annals of Internal Medicine, vol. 146, no. 3, pp. 193–203, 2007. View at Scopus
  48. A. El-Nawawy, H. El-Kinany, M. H. El-Sayed, and N. Boshra, “Intravenous polyclonal immunoglobulin administration to sepsis syndrome patients: a prospective study in a pediatric intensive care unit,” Journal of Tropical Pediatrics, vol. 51, no. 5, pp. 271–278, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Brocklehurst, B. Farrell, A. King, et al., “Treatment of neonatal sepsis with intravenous immune globulin,” New England Journal of Medicine, vol. 365, no. 13, pp. 1201–1211, 2011. View at Publisher · View at Google Scholar
  50. L. Bo, F. Wang, J. Zhu, J. Li, and X. Deng, “Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) for sepsis: a meta-analysis,” Critical Care, vol. 15, no. 1, p. R58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. J. C. Schefold, “Immunostimulation using granulocyte- and granulocyte-macrophage colony stimulating factor in patients with severe sepsis and septic shock,” Critical Care, vol. 15, no. 2, p. 136, 2011. View at Publisher · View at Google Scholar
  52. C. Meisel, J. C. Schefold, R. Pschowski et al., “Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 7, pp. 640–648, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. W. D. Docke, F. Randow, U. Syrbe, et al., “Monocyte deactivation in septic patients: restoration by IFN-gamma treatment,” Nature Medicine, vol. 3, no. 6, pp. 678–681, 1997. View at Publisher · View at Google Scholar
  54. C. L. Holmes, J. A. Russell, and K. R. Walley, “Genetic polymorphisms in sepsis and septic shock: role in prognosis and potential for therapy,” Chest, vol. 124, no. 3, pp. 1103–1115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. H. R. Wong, “Genetics and genomics in pediatric septic shock,” Critical Care Medicine, vol. 40, no. 5, pp. 1618–1626, 2012. View at Publisher · View at Google Scholar
  56. M. A. Beyster, D. Hardison, and G. Lubin, “Improving clinical trials by implementing information technology (IT): where will you be in five years?” Implementing Information Technology to Improve the Clinical Trial Process, 2005.
  57. U.S. Department of Health and Human Services and Food and Drug Administration, Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products, U.S. Department of Health and Human Services, Food and Drug Administration, Silver Spring, Md, USA, 2004.