About this Journal Submit a Manuscript Table of Contents
International Journal of Inorganic Chemistry
Volume 2012 (2012), Article ID 610305, 43 pages
http://dx.doi.org/10.1155/2012/610305
Review Article

Structure and Magnetic Properties of Aerosol Nanoparticles of Fe and Its Alloys

Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosyguin straß 4, GSP-1, Moscow 119991, Russia

Received 2 March 2012; Revised 5 April 2012; Accepted 12 April 2012

Academic Editor: Zbigniew Tomkowicz

Copyright © 2012 Yu. I. Petrov and E. A. Shafranovsky. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Yu. I. Petrov, Fizika Malykh Chastits (Physics of Small Particles), Nauka, Moscow, Russia, 1982.
  2. Yu. I. Petrov, Klastery i Malye Chastitsy (Clusters and Small Particles), Nauka, Moscow, Russia, 1986.
  3. Yu. I. Petrov, “Preparation, some properties, and applications of aerosol particles of metals, their alloys. and compounds,” Khimicheskaya fizika, vol. 22, no. 3, pp. 3–14, 2003 (Russian).
  4. M. Ratner and D. Ratner, Nanotechnology, Pearson Education, Prentice Hall, Upper Saddle River, NJ, USA, 2003.
  5. G. Xiao, J. Q. Wang, and P. Xiong, “Giant magnetoresistance and anomalous Hall effect in Co–Ag and Fe–Cu, Ag, Au, Pt granular alloys,” IEEE Transactions on Magnetics, vol. 29, no. 6, pp. 2694–2699, 1993. View at Publisher · View at Google Scholar
  6. C. Peng and D. Dai, “Magnetic properties and magnetoresistance in granular Fe–Cu alloys,” Journal of Applied Physics, vol. 76, no. 5, pp. 2986–2990, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Tang, “Magnetic properties of a few material systems made by mechanical alloying and milling,” Materials Science Forum, vol. 235–238, pp. 819–824, 1997.
  8. U. K. Rössler, B. Idzikowski, D. Eckert, et al., “Structural, magnetic and magnetotransport properties of melt-spun Fe10Cu90,” IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 2841–2843, 1999. View at Publisher · View at Google Scholar
  9. Q. A. Pankhurst and R. J. Pollard, “Fine-particle magnetic oxides,” Journal of Physics, vol. 5, no. 45, pp. 8487–8508, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” Journal of Physics D, vol. 36, no. 13, pp. R167–R181, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. A. Pankhurst, N. K. T. Thanh, S. K. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” Journal of Physics D, vol. 42, no. 22, Article ID 224001, 15 pages, 2009. View at Publisher · View at Google Scholar
  12. P. Gorria, D. Martinez-Blanco, J. A. Blanco, et al., “Invar effect in fcc-FeCu solid solutions,” Physical Review B, vol. 69, no. 21, Article ID 214421, 5 pages, 2004. View at Publisher · View at Google Scholar
  13. Yu. I. Petrov, “Nanoscale materials for microelectronics. New technology,” in Proceedings of the 1st International Conference on Progress in Inorganic and Organometallic Chemistry, P. Zdroj, Poland, F. P. Pruchnik, and M. Zuber, Eds., pp. 228–239, Wroclaw University, 1994.
  14. M. Y. Guen, E. A. Velichenkova, I. V. Eryomina, and M. S. Ziskin, “On the conditions of formation and properties of Ag–Cu alloy in a finely divided form,” Fizika Tverdogo Tela (Soviet Physics, Solid State), vol. 6, pp. 1622–1626, 1964 (Russian).
  15. G. A. Lontsova and Yu. I. Petrov, “Highly dispersed films of cadmium selenide,” Doklady Akademii Nauk SSSR, vol. 303, pp. 1407–1410, 1988 (Russian).
  16. M. Y. Guen, M. S. Ziskin, and Yu. I. Petrov, “A study of the dispersion of aluminium aerosols as dependent on the conditions of their formation,” Doklady Akademii Nauk SSSR, vol. 127, no. 2, pp. 366–368, 1959 (Russian).
  17. Yu. I. Petrov and E. A. Shafranovsky, “Features of ultrafine inorganic particle preparation by the gas evaporation method,” Bulletin of the Russian Academy of Sciences, vol. 64, no. 8, pp. 1236–1244, 2000.
  18. E. A. Shafranovsky and Yu. I. Petrov, “Aerosol nanoparticles of metals, alloys and compounds: synthesis, properties and potential applications,” in Aerosols: Properties, Sources and Management Practices, Ya. Alekseyev and K. Plisetskaya, Eds., Nova Science, New York, NY, USA, 2012.
  19. M. Y. Guen and Yu. I. Petrov, “Disperse condensates of metal vapour,” Russian Chemical Reviews, vol. 38, no. 12, pp. 1007–1024, 1969. View at Publisher · View at Google Scholar
  20. E. A. Shafranovsky and Yu. I. Petrov, “Aerosol Fe nanoparticles with the passivating oxide shell,” Journal of Nanoparticle Research, vol. 6, no. 1, pp. 71–90, 2004.
  21. M. Y. Guen and A. V. Miller, “Levitation method for producing ultrafine powders of metals,” Surface—Physics, Chemistry, Mechanics, no. 2, pp. 150–154, 1983 (Russian).
  22. M. Y. Guen and A. V. Miller, “Method for producing aerosols of metals by evaporating a levitated and RF field heated drop of metal,” Byulleten Izobretiniia, no. 11, p. 251981 (Russian), USSR Inventor's Certificate no. 814432.
  23. A. N. Jigach, I. O. Leipunskiy, M. L. Kuskov, N. I. Stoenko, and V. B. Storozhev, “An apparatus for the production and study of metal nanoparticles,” Instruments and Experimental Techniques, vol. 43, no. 6, pp. 839–845, 2000.
  24. Yu. I. Petrov, “High-temperature X-ray chamber for studying powders,” Pribory i Tekhnika Eksperimenta, no. 4, pp. 162–164, 1963 (Russian).
  25. L. Lutterrotti and S. Gialanella, “X-ray diffraction characterization of heavily deformed metallic specimens,” Acta Materialia, vol. 46, no. 1, pp. 101–110, 1997. View at Publisher · View at Google Scholar
  26. R. A. Brand, “Improving the validity of hyperfine field distributions from magnetic alloys,” Nuclear Instruments and Methods in Physics Research Section B, vol. 28, pp. 398–416, 1987.
  27. E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philosophical Transactions of the Royal Society A, vol. 240, no. 826, pp. 599–642, 1948.
  28. T. Ibusuki, S. Kojima, O. Kitakami, and Y. Shimada, “Magnetic anisotropy and behaviors of Fe nanoparticles,” IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 2223–2225, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. I. S. Jacobs and C. P. Bean, “An approach to elongated fine-particle magnets,” Physical Review, vol. 100, no. 4, pp. 1060–1067, 1955. View at Publisher · View at Google Scholar
  30. R. H. Kodama, A. E. Berkowitz, E. J. McNiff Jr., and S. Foner, “Surface spin disorder in NiFe2O4 nanoparticles,” Physical Review Letters, vol. 77, no. 2, pp. 394–397, 1996. View at Scopus
  31. R. H. Kodama and A. E. Berkowitz, “Atomic-scale magnetic modeling of oxide nanoparticles,” Physical Review B, vol. 59, no. 9, pp. 6321–6336, 1999. View at Publisher · View at Google Scholar
  32. R. H. Kodama, “Magnetic nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 200, no. 1–3, pp. 359–372, 1999. View at Publisher · View at Google Scholar
  33. Yu. I. Petrov, “Surface pressure in clusters and small particles—is it real?” Phase Transitions, vol. 24–26, no. 2, pp. 407–417, 1990. View at Publisher · View at Google Scholar
  34. Yu. I. Petrov, “A new view on the surface stresses in condensed media,” Phase Transitions, vol. 45, no. 4, pp. 221–250, 1993. View at Publisher · View at Google Scholar
  35. Yu. I. Petrov, “On the surface stress and surface pressure in clusters and small particles,” in Progress in the Physics of Clusters, G. N. Chuev, V. D. Lachno, and A. P. Nefedov, Eds., pp. 431–457, World Scientific, Singapore, 1999.
  36. W. F. Schlosser, “A model for the Invar alloys and the Fe–Ni system,” Journal of Physics and Chemistry of Solids, vol. 32, no. 5, pp. 939–949, 1971. View at Publisher · View at Google Scholar
  37. B. Window, “Invar anomalies,” Journal of Applied Physics, vol. 44, no. 6, pp. 2853–2861, 1973. View at Publisher · View at Google Scholar
  38. E. F. Wassermann, “New developments on the invar-effect,” Physica Scripta, vol. T25, pp. 209–219, 1989. View at Publisher · View at Google Scholar
  39. E. F. Wassermann and P. Entel, “Invar, AF-Invar, anti-Invar and martensite in fcc Fe-based alloys: an attempt to order this chaos,” Journal de Physique (4), vol. 5, pp. C8-287–C8-292.
  40. L. Kaufman, E. V. Clougherty, and R. J. Weiss, “The lattice stability of metals-III. Iron,” Acta Metallurgica, vol. 11, no. 5, pp. 323–335, 1963. View at Scopus
  41. R. J. Weiss, “The origin of the “invar” effect,” Proceedings of the Physical Society, vol. 82, no. 2, pp. 281–288, 1963. View at Publisher · View at Google Scholar
  42. R. J. Weiss, “The invar effect,” Philosophical Magazine, vol. 26, pp. 261–263, 1972.
  43. Yu. I. Petrov and E. A. Shafranovsky, “Exhibition of high- and low-spin states of the high-temperature fcc phase in nanoparticles of Fe, Fe-rich and Co-rich alloys,” Journal of Nanoparticle Research, vol. 3, no. 5-6, pp. 419–432, 2001.
  44. Y. V. Baldokhin and Yu. I. Petrov, “Two states of the face-centered-cubic structure in iron discovered while investigating the Mössbauer spectra and the thermal expansion of small particles,” Soviet physics, Doklady, vol. 37, pp. 563–565, 1992.
  45. H. Esser and H. Eusterbrock, “Untersuchung der Wärmeausdehnung von einigen Metallen and Legierungen mit einem verbesserten Dilatometer,” Archiv fuer das Eisenhuettenwes, vol. 14, pp. 341–355, 1941.
  46. Z. S. Basinski, W. Hume-Rothery, and A. L. Sutton, “The lattice expansion of iron,” Proceedings of the Royal Society A, vol. 229, no. 1179, pp. 459–467, 1955. View at Publisher · View at Google Scholar
  47. M. Acet, H. Zayres, E. F. Wassermann, and W. Pepperhoff, “High-temperature moment-volume instability and anti-Invar of γ-Fe,” Physical Review B, vol. 49, no. 9, pp. 6012–6017, 1994. View at Publisher · View at Google Scholar
  48. Y. V. Baldokhin, P. Y. Kolotyrkin, Yu. I. Petrov, and E. A. Shafranovsky, “Structure and Mössbauer spectra of ultrasmall particles of iron-enriched Fe–Mn alloys,” Doklady Physics, vol. 40, pp. 491–494, 1995.
  49. Y. V. Baldokhin, P. Y. Kolotyrkin, Yu. I. Petrov, and E. A. Shafranovsky, “Structural and magnetic transformations in Fe-rich fine Fe–Mn particles,” Physics Letters A, vol. 211, no. 4, pp. 237–241, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. V. Baldokhin, P. Y. Kolotyrkin, Yu. I. Petrov, and E. A. Shafranovsky, “Comparative study of the structure and local magnetic order in bulk and ultrafine particles of Fe–Mn (32%–35%) and Fe3Pt,” Journal of Applied Physics, vol. 82, no. 6, pp. 3042–3046, 1997. View at Scopus
  51. Yu. I. Petrov, E. A. Shafranovsky, Y. V. Baldokhin, and G. A. Kochetov, “On ferro- and antiferromagnetic ordering in ultrafine particles of Fe-rich Fe–Ni and Fe–Mn alloys,” Journal of Applied Physics, vol. 86, no. 12, pp. 7001–7005, 1999. View at Scopus
  52. Y. V. Baldokhin, P. Y. Kolotyrkin, I. I. Morozov, Yu. I. Petrov, and E. A. Shafranovsky, “Structural transformations of small Fe–Ni particles with a change in the hyperfine parameters of the Mössbauer spectra,” Physics-Doklady, vol. 38, pp. 226–228, 1993.
  53. Y. V. Baldokhin, P. Y. Kolotyrkin, Yu. I. Petrov, and E. A. Shafranovsky, “Some specific features of fine Fe and Fe–Ni particles,” Journal of Applied Physics, vol. 76, no. 10, pp. 6496–6498, 1994. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. V. Baldokhin, P. Y. Kolotyrkin, Yu. I. Petrov, and E. A. Shafranovsky, “On the exhibition of high and low spin states of the fcc phase in ultrafine Fe and Fe–Ni particles,” Physics Letters A, vol. 189, no. 1-2, pp. 137–139, 1994. View at Scopus
  55. Y. V. Baldokhin, P. Y. Kolotyrkin, Yu. I. Petrov, and E. A. Shafranovsky, “Comparison of the structure of the Mössbauer spectra of ultrasmall particles and bulk alloy Fe3Pt,” Doklady Physical Chemistry, vol. 347, pp. 45–48, 1996.
  56. V. Papaefthymiou, A. Kostikas, A. Simopoulos et al., “Magnetic hysteresis and Mössbauer studies in ultrafine iron particles,” Journal of Applied Physics, vol. 67, no. 9, pp. 4487–4489, 1990. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Endoch and Y. Ishikawa, “Antiferromagnetism of γ iron manganese alloys,” Journal of the Physical Society of Japan, vol. 30, pp. 1614–1627, 1971.
  58. O. G. Sokolov and A. I. Mel'ker, “Invar effect in iron-manganese alloys,” Doklady Akademii Nauk SSSR, vol. 159, pp. 74–76, 1964 (Russian).
  59. R. Bauminger, S. G. Cohen, A. Marinov, S. Ofer, and E. Segal, “Study of the low-temperature transition in magnetite and the internal fields acting on iron nuclei in some spinel ferrites, using Mössbauer absorption,” Physical Review, vol. 122, no. 5, pp. 1447–1450, 1961. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. V. Baldokhin, Yu. I. Petrov, and E. A. Shafranovsky, “Structural and magnetic transformations of Fe-rich Fe–Ni–Mn alloy under transition from bulk solid to fine particles,” Bulletin of the Russian Academy of Sciences, vol. 62, pp. 919–925, 1998.
  61. Yu. I. Petrov, E. A. Shafranovsky, and Y. V. Baldokhin, “Structure and local magnetic order in ultrafine particles of Fe65(Ni1xMnx)35 (0x1) alloys,” Solid State Communications, vol. 113, no. 3, pp. 153–158, 2000. View at Scopus
  62. M. Shiga, “Magnetic properties of Fe65(Ni1xMnx)35 ternary alloys,” Journal of the Physical Society of Japan, vol. 22, no. 2, pp. 539–546, 1967.
  63. B. Huck, F. Saurenbach, and J. Hesse, “Investigation of spin structure in fcc Fe–Ni–Mn,” Hyperfine Interactions, vol. 28, no. 1–4, pp. 479–482, 1986. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Fricke and J. Hesse, “Mössbauer study indicating magnetic clusters in FeNiMn reentrant spin glass alloys,” Hyperfine Interactions, vol. 70, pp. 1105–1108, 1992.
  65. E. A. Owen, E. L. Yates, and A. H. Sully, “An X-ray investigation of pure iron-nickel alloys. Part 4: the variation of lattice-parameter with composition,” Proceedings of the Royal Society of London, vol. 49, pp. 315–322, 1937.
  66. M. Shiga, “Influence of magnetization on lattice constants of 3D transition metal alloys,” Solid State Communications, vol. 10, no. 12, pp. 1233–1236, 1972. View at Scopus
  67. A. E. Vol, Sructure and Properties of Binary Metal System, Fizmatgiz, Moscow, Russia, 1962.
  68. O. Kubaschewsky, Iron-Binary Phase Diagrams, Springer, Berlin, Germany, 1982.
  69. E. A. Owen, E. L. Yales, and A. H. Sully, “An X-ray investigation of pure iron-nickel alloys. Part 5: the variation of thermal expansion with composition,” Proceedings of the Royal Society of London, vol. 49, pp. 323–325, 1937.
  70. Y. V. Baldokhin, P. Y. Kolotyrkin, V. A. Makarov, Yu. I. Petrov, and E. A. Shafranovsky, “Phase transitions, crystallographic and local magnetic ordering of Fe3Pt,” Phase Transitions, vol. 64, no. 4, pp. 239–247, 1998. View at Scopus
  71. Yu. I. Petrov and E. A. Shafranovsky, “Correlation of the structure and Mössbauer spectra of ultrafine particles and bulk Fe–Co alloy as functions of the composition,” Doklady Physics, vol. 44, pp. 605–609, 1999.
  72. P. J. Murray and J. W. Linnit, “Mössbauer studies in the spinel system CoxFe3xO4,” Journal of Physics and Chemistry of Solids, vol. 37, no. 6, pp. 619–624, 1976. View at Publisher · View at Google Scholar
  73. C. E. Johnson, M. S. Ridout, and T. E. Cranshaw, “The Mössbauer effect in iron alloys,” Proceedings of the Physical Society, vol. 81, no. 6, pp. 1079–1090, 1963. View at Publisher · View at Google Scholar
  74. B. De Mayo, D. W. Forster, and S. Spooner, “Effects of atomic configurational changes on hyperfine interactions in concentrated iron-cobalt alloys,” Journal of Applied Physics, vol. 41, pp. 1319–1320, 1970.
  75. I. Vincze, I. A. Campbell, and A. J. Meyer, “Hyperfine field and magnetic moments in b.c.c. Fe–Co and Fe–Ni,” Solid State Communications, vol. 15, no. 9, pp. 1495–1499, 1974. View at Scopus
  76. E. Jartych, J. K. Zurawicz, and M. Budzynski, “A Mössbauer study of electrodeposited Fe1xCox alloys,” Journal of Physics, vol. 5, no. 7, pp. 927–934, 1993. View at Publisher · View at Google Scholar · View at Scopus
  77. Y. V. Baldokhin, V. V. Cherdyntsev, S. D. Kaloshkin, and I. A. Tomilin, “Hyperfine structure of iron-cobalt-system alloys prepared by mechanical fusion,” Doklady Physics, vol. 43, no. 7, pp. 397–399, 1998. View at Scopus
  78. Y. Muraoka, T. Fujiwara, M. Shiga, and Y. Nakamura, “Sharp transition from ferromagnetic to antiferromagnetic state in fcc Fe–Co particles precipitated in Cu matrix,” Journal of the Physical Society of Japan, vol. 50, no. 10, pp. 3284–3291, 1981.
  79. Yu. I. Petrov and E. A. Shafranovsky, “Specific features of the hyperfine field at iron nuclei in aerosol nanoparticles of FeCo alloy,” Doklady Physical Chemistry, vol. 440, no. 1, pp. 178–182, 2011.
  80. Yu. I. Petrov, “Structure and thermal expansion of small Co particles,” Kristallografiya, vol. 11, pp. 931–932, 1966 (Russian).
  81. J. Slater, The Self-Consistent Field for Molecules and Solids, McGrow-Hill, New York, NY, USA, 1974.
  82. F. Seitz, The Modern Theory of Solids, McGraw-Hill, New York, NY, USA, 1940.
  83. Yu. I. Petrov, E. A. Shafranovsky, Y. F. Krupyanskii, and S. V. Esin, “Specific features of the structure and local magnetic order in nanoparticles of the Fe–Cr alloy,” Doklady Physical Chemistry, vol. 379, no. 1–3, pp. 194–198, 2001. View at Publisher · View at Google Scholar
  84. Yu. I. Petrov, E. A. Shafranovsky, Y. F. Krupyanskii, and S. V. Essine, “Structure and Mössbauer spectra for the Fe–Cr system: from bulk alloy to nanoparticles,” Journal of Applied Physics, vol. 91, no. 1, pp. 352–361, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. E. A. Shafranovsky, Yu. I. Petrov, M. Gich et al., “Structural and magnetic properties of bulk alloys and aerosol nanoparticles in the Fe100xCrx system,” Journal of Alloys and Compounds, vol. 416, no. 1-2, pp. 51–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. B. G. Bergman and D. P. Shoemaker, “The determination of the crystal structure of the phase in the iron-chromium and iron-molybdenum systems,” Acta Crystallographica, vol. 7, pp. 857–865, 1954. View at Publisher · View at Google Scholar
  87. G. J. Dickins, A. M. B. Douglas, and W. H. Taylor, “Sigma-phase in the Co–Cr and Fe–Cr systems,” The Journal of the Iron and Steel Institute, vol. 167, 27 pages, 1951.
  88. G. D. Preston, “X-ray examination of chromium-iron alloys,” The Journal of the Iron and Steel Institute, vol. 124, pp. 139–141, 1931.
  89. G. D. Preston, “XXXV. An X-ray examination of iron-chromium alloys,” Philosophical Magazine, vol. 13, no. 84, pp. 419–425, 1932. View at Publisher · View at Google Scholar
  90. A. P. Gulyaev and E. F. Trusova, “Regularities of changes in the properties of solid solutions,” Zhurnal Tekhnicheskoi Fiziki, vol. 20, pp. 66–78, 1950 (Russian).
  91. A. L. Sutton and W. Hume-Rothery, “. The lattice spacings of solid solutions of titanium, vanadium, chromium, manganese, cobalt and nickel in α-iron,” Philosophical Magazine, vol. 46, no. 383, pp. 1295–1309, 1955. View at Publisher · View at Google Scholar
  92. T. De Nys and P. M. Gielen, “Spinodal decomposition in the Fe–Cr system,” Metallurgical Transactions, vol. 2, no. 5, pp. 1423–1428, 1971. View at Publisher · View at Google Scholar · View at Scopus
  93. H. Yamomoto, “A study on the nature of aging of Fe–Cr alloys by means of the Mössbauer effect,” Japanese Journal of Applied Physics, vol. 3, pp. 745–748, 1964. View at Publisher · View at Google Scholar
  94. M. Shiga and Y. Nakamura, “Effect of local environment on formation of local moments in bcc Fe–Cr alloys—Mössbauer study,” Journal of the Physical Society of Japan, vol. 49, no. 2, pp. 528–534, 1980.
  95. P. A. Beck, “Magnetic behavior of intermediate phases in alloys of transition elements,” Transactions. American Institute of Mining, Metallurgical and Petroleum Engineers, vol. 194, p. 420, 1952.
  96. S. M. Dubiel and J. Zukrowski, “Mössbauer effect study of charge and spin transfer in Fe–Cr,” Journal of Magnetism and Magnetic Materials, vol. 23, no. 2, pp. 214–228, 1981. View at Publisher · View at Google Scholar
  97. H. Kuwano and K. Ono, “Mössbauer study of Fe1xCrx alloys,” Journal of the Physical Society of Japan, vol. 42, pp. 72–75, 1977. View at Publisher · View at Google Scholar
  98. Y. Li, W. Gong, G. C. Hadjipanayis et al., “Size effects on the magnetic properties of fine Fe–Cr particles,” Journal of Magnetism and Magnetic Materials, vol. 130, no. 1–3, pp. 261–266, 1994. View at Scopus
  99. M. V. Nevitt and A. T. Aldred, “Ferromagnetism in V–Fe and Cr–Fe alloys,” Journal of Applied Physics, vol. 34, no. 3, pp. 463–468, 1963. View at Publisher · View at Google Scholar
  100. W. Gong, H. Le, Z. Zhao, et al., “Magnetic properties of Fe–Cr ultrafine particles,” Journal of Applied Physics, vol. 70, no. 10, pp. 5900–5902, 1991. View at Publisher · View at Google Scholar
  101. A. Tasaki, M. Takao, and H. Tokunaga, “Magnetic properties of ferromagnetic metal alloy fine particles prepared by evaporation in inert gasses. II,” Japanese Journal of Applied Physics, vol. 13, pp. 271–276, 1974. View at Publisher · View at Google Scholar
  102. P. A. Flinn and S. L. Ruby, “Local magnetic fields in Fe–Al alloys,” Physical Review, vol. 124, no. 1, pp. 34–36, 1961. View at Publisher · View at Google Scholar
  103. K. Wertheim, V. Jaccardino, J. H. Wernick, and D. N. E. Buchanan, “Range of the exchange interaction in iron alloys,” Physical Review Letters, vol. 12, no. 1, pp. 24–27, 1964. View at Publisher · View at Google Scholar
  104. B. Fultz, “Chemical systematics of iron-57 hyperfine magnetic field distributions in iron alloys,” in Mössbauer Spectroscopy Applied to Magnetism and Material Science, G. J. Long and F. Grandjean, Eds., vol. 1, Plenum Press, New York, NY, USA, 1993.
  105. A. T. Aldred, B. D. Rrainford, J. S. Kouvel, and T. J. Hicks, “Ferromagnetism in iron-chromium alloys. II. Neutron scattering studies,” Physical Review B, vol. 14, no. 1, pp. 228–234, 1976. View at Publisher · View at Google Scholar
  106. E. A. Shafranovsky, Yu. I. Petrov, L. Casas, and E. Molin, “Structural and Mössbauer studies of aerosol FeCu nanoparticles in a wide composition range,” Journal of Nanoparticle Research, vol. 13, pp. 4913–4928, 2011.
  107. J. Z. Jiang, C. Gente, and R. Bormann, “Mechanical alloying in the Fe–Cu system,” Materials Science and Engineering A, vol. 242, no. 1-2, pp. 268–277, 1998. View at Publisher · View at Google Scholar
  108. C. L. Chien, S. H. Liou, D. Kofalt et al., “Magnetic properties of FexCu100x solid solutions,” Physical Review B, vol. 33, no. 5, pp. 3247–3250, 1986. View at Publisher · View at Google Scholar · View at Scopus
  109. W. Keune, J. Lauer, and D. L. Williamson, “Mössbauer studies of FeCu films,” Journal of Physics, vol. 35, pp. C6-473–C6-478, 1974.
  110. J. Klein, T. Heck, S. J. Campbell, F. Aubertin, and U. Gonser, “The activation energy for γ-Fe precipitates in CuFe,” Hyperfine Interactions, vol. 54, no. 1–4, pp. 811–816, 1990. View at Publisher · View at Google Scholar · View at Scopus
  111. B. Window, “Hyperfine fields at 57Fe in copper iron alloys,” Journal of Physics C, vol. 3, no. 3, pp. S323–S329, 1970. View at Publisher · View at Google Scholar
  112. J. Z. Jiang, U. Gonser, C. Gente, and R. Borman, “Thermal stability of the unstable fcc-Fe50Cu50 phase prepared by mechanical alloying,” Applied Physics Letters, vol. 63, no. 8, pp. 1056–1058, 1993. View at Publisher · View at Google Scholar
  113. A. Hernando, P. Crespo, A. R. Yavari, A. Garcia-Escorial, and J. M. Barandiaran, “Formation of γ-Fe by mechanical alloying of Cu–Fe?” IEEE Transactions on Magnetics, vol. 29, no. 6, pp. 2634–2636, 1993. View at Publisher · View at Google Scholar · View at Scopus
  114. P. Crespo, A. Hernando, R. Yavari et al., “Magnetic behavior of metastable fcc Fe–Cu after thermal treatments,” Physical Review B, vol. 48, no. 10, pp. 7134–7139, 1993. View at Publisher · View at Google Scholar · View at Scopus
  115. P. Crespo, A. Hernando, A. G. Escorial, K. M. Kemner, and V. G. Harris, “Extended X-ray-absorption fine-structure studies of heat-treated fcc-Fe50Cu50 powders processed via high-energy ball milling,” Journal of Applied Physics, vol. 76, no. 10, pp. 6322–6324, 1994. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Hernando, P. Crespo, A. Garsia-Escorial, and J. M. Barandiaran, “Comment on ‘mechanically driven alloying of immiscible elements’,” Physical Review Letters, vol. 70, no. 22, article 3521, 1993. View at Publisher · View at Google Scholar
  117. Y. Yang, Y. Zhu, Q. S. Li et al., “Mechanical alloying, fine structure and thermal decomposition of nanocrystalline FCC-Fe60Cu40,” Physica B, vol. 293, no. 3-4, pp. 249–259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  118. E. A. Shafranovsky, Yu. I. Petrov, L. Casas, and E. Molins, “Structure and composition of aerosol particles obtained on evaporation of a homogeneous FeCu(50.4 at%) alloy,” Doklady Physical Chemistry, vol. 429, no. 2, pp. 246–251, 2009.
  119. K. Sumiyama, Y. Nakamura, and K. Tanaka, “Mössbauer spectra and electronic structure of nonequilibrium Fe–Cu alloys produced by vapor quenching,” Hyperfine Interactions, vol. 53, no. 1–4, pp. 143–158, 1990. View at Publisher · View at Google Scholar
  120. Q. A. Pankhurst, M. F. Thomas, C. E. Johnson, R. Zquiak, X. X. Zhang, and J. Tejada, “Mössbauer study of Fe (5 Å) + Cu (50 Å) multilayers,” IEEE Transactions on Magnetics, vol. 30, no. 2, pp. 778–780, 1994. View at Publisher · View at Google Scholar · View at Scopus
  121. S. C. Abrahams, L. Guttman, and J. S. Kasper, “Neutron diffraction determination of antiferromagnetism in face-centered cubic (γ) iron,” Physical Review, vol. 127, no. 6, pp. 2052–2055, 1962. View at Publisher · View at Google Scholar · View at Scopus
  122. U. Gonser, C. J. Meechan, A. H. Muir, and H. Wiedersich, “Determination of néel temperatures in fcc iron,” Journal of Applied Physics, vol. 34, no. 8, pp. 2373–2378, 1963. View at Publisher · View at Google Scholar · View at Scopus
  123. G. J. Johanson, M. B. McGirr, and D. A. Wheeler, “Determination of the néel temperature of face-centered-cubic iron,” Physical Review B, vol. 1, no. 7, article 3208, 1970. View at Publisher · View at Google Scholar · View at Scopus
  124. W. Keune, R. Halbauer, U. Gonser, J. Lauer, and D. L. Williamson, “Antiferromagnetism of fcc Fe thin films,” Journal of Applied Physics, vol. 48, no. 7, pp. 2976–2979, 1977. View at Publisher · View at Google Scholar · View at Scopus
  125. R. Halbauer and U. Gonser, “Antiferromagnetism of fcc iron films,” Journal of Magnetism and Magnetic Materials, vol. 35, no. 1–3, pp. 55–56, 1983. View at Publisher · View at Google Scholar
  126. W. A. A. Macedo and W. Keune, “Magnetism of epitaxial fcc-Fe(100) films on Cu(100) investigated in situ by conversion-electron Mössbauer spectroscopy in ultrahigh vacuum,” Physical Review Letters, vol. 61, no. 4, pp. 475–478, 1988. View at Publisher · View at Google Scholar
  127. W. Keune, T. Ezawa, W. A. A. Macedo, U. Glos, K. P. Schletz, and U. Kirschbaum, “Magneto-volume effects in γ-Fe ultrathin films and small particles,” Physica B, vol. 161, no. 1–3, pp. 269–275, 1989. View at Scopus
  128. J. L. Tholence and R. Tournier, “One-impurity and interaction effects on the Cu : Fe magnetization,” Physcial Review Letters, vol. 25, no. 13, pp. 867–871, 1970. View at Publisher · View at Google Scholar
  129. U. Gradmann and H. O. Isbert, “Ferromagnetic γ-iron films prepared on CuAu(111)-surfaces,” Journal of Magnetism and Magnetic Materials, vol. 15–18, no. 2, pp. 1109–1111, 1980. View at Scopus
  130. M. Donath, M. Pickel, A. B. Schmidt, and M. Weinelt, “Ferromagnetic Fe on Cu(001) throughout the fcc-like phase: arguing from the viewpoint of the electronic structure,” Journal of Physics, vol. 21, no. 13, Article ID 134004, 6 pages, 2009. View at Publisher · View at Google Scholar
  131. A. Roig, X. X. Zhang, R. Zuberek, J. Tejada, and E. Molins, “Magnetic properties of Fe Cu multilayers,” Journal of Magnetism and Magnetic Materials, vol. 140–144, no. 1, pp. 559–560, 1995. View at Scopus
  132. L. Del Bianco, C. Ballesteros, J. M. Rojo, and A. Hernando, “Magnetically ordered fcc structure at the relaxed grain boundaries of pure nanocrystalline Fe,” Physical Review Letters, vol. 81, no. 20, pp. 4500–4503, 1998. View at Scopus
  133. P. Gorria, D. Martinez-Blanco, J. A. Blanco, et al., “High-temperature induced ferromagnetism on γ-Fe precipitates in FeCu solid solutions,” Physical Review B, vol. 72, no. 1, Article ID 014401, 7 pages, 2005. View at Publisher · View at Google Scholar
  134. A. Yousif, K. Bouziane, M. E. Elzain et al., “Magnetic properties of nanocrystalline FexCu1x alloys prepared by ball milling,” Hyperfine Interactions, vol. 156-157, no. 1–4, pp. 213–221, 2004. View at Scopus
  135. P. Chubing, C. Haiying, L. Guozhong, and D. Daosheng, “Magnetic properties of FexCu1x granular alloy films,” Journal of Applied Physics, vol. 76, no. 10, pp. 7102–7104, 1994. View at Publisher · View at Google Scholar · View at Scopus
  136. N. H. Duc, N. A. Tuan, A. Fnidiki et al., “Structural, magnetic and Mössbauer studies of Fe–Cu granular films,” Journal of Physics Condensed Matter, vol. 14, no. 26, pp. 6657–6666, 2002. View at Publisher · View at Google Scholar · View at Scopus
  137. H. Q. Guo, X. D. Ma, L. Y. Yang, B. G. Shen, and J. G. Zhao, “Structure, magnetic properties and stability of the interfaces in Fe/Cu multilayer,” Journal of Magnetism and Magnetic Materials, vol. 99, no. 1–3, pp. 199–203, 1991. View at Publisher · View at Google Scholar
  138. P. J. Schurer, B. Scully, M. Kowalewski, and B. Heinrich, “Mössbauer investigation of the Fe/Cu interfaces in BCC Fe/Cu/Fe(001) structures,” Journal of Magnetism and Magnetic Materials, vol. 224, no. 1, pp. 65–75, 2001. View at Publisher · View at Google Scholar
  139. B. Bandyopadhyay, B. Pahari, and K. Ghoshray, “Magnetization and 63Cu NMR studies on granular FeCu alloys,” Physical Review B, vol. 76, no. 21, Article ID 214424, 6 pages, 2007. View at Publisher · View at Google Scholar
  140. V. P. Parfenova, N. N. Delyagin, A. L. Erzinkyan, and S. I. Reyman, “Local spin configurations of Fe atoms in the Rh1xFex (x = 0.1, 0.2, and 0.3) system with competing exchange interactions,” Physics of the Solid State, vol. 42, no. 8, pp. 1465–1470, 2000. View at Scopus
  141. A. L. Erzinkyan, N. N. Delyagin, V. P. Parfenova, and S. I. Reyman, “Origin of the strong influence of rhodium on the Curie temperature of Pd–Fe alloys: the spin reorientation in (Pd100xRhx)90Fe10 alloys,” Journal of Magnetism and Magnetic Materials, vol. 231, no. 1, pp. 20–22, 2001. View at Publisher · View at Google Scholar
  142. N. N. Delyagin, A. L. Erzinkyan, V. P. Parfenova, and S. I. Reyman, “Antiferromagnetic spin correlations in palladium-based Pd–Fe, Pd–Fe–Ag, and Pd–Fe–Rh magnetic alloys,” Journal of Experimental and Theoretical Physics, vol. 95, no. 6, pp. 1056–1061, 2002. View at Publisher · View at Google Scholar · View at Scopus
  143. Yu. I. Petrov and E. A. Shafranovsky, “On the conditions eliciting a detailed structure in the hyperfine field distribution at 57Fe nuclei,” Nuclear Instruments and Methods in Physics Research Section B, vol. 271, pp. 96–101, 2012. View at Publisher · View at Google Scholar
  144. Yu. I. Petrov and E. A. Shafranovsky, “On discontinuity of hyperfine fields at 57Fe nuclei in bulk iron and aerosol Fe nanoparticles,” Physics Letters A, vol. 336, no. 2-3, pp. 253–258, 2005. View at Publisher · View at Google Scholar
  145. Yu. I. Petrov, E. A. Shafranovsky, L. Casas, and E. Molins, “On the origin of discontinuity of the hyperfine fields at 57Fe nuclei in bulk iron and aerosol Fe nanoparticles,” Physics Letters A, vol. 375, no. 11, pp. 1421–1425, 2011. View at Publisher · View at Google Scholar
  146. Yu. I. Petrov, E. A. Shafranovsky, Y. F. Krupyanskii, and S. V. Esin, “Discrete structure of the hyperfine field distribution at Fe nuclei in the bulk FePd alloy and its nanoparticles,” Doklady Physical Chemistry, vol. 399, no. 1–3, pp. 269–274, 2004. View at Publisher · View at Google Scholar
  147. Yu. I. Petrov and E. A. Shafranovsky, “Discrete distribution of hyperfine fields at the Fe nuclei in Fe–Co nanoparticles,” Doklady Physical Chemistry, vol. 411, no. 2, pp. 339–344, 2006.
  148. J. Hesse and A. Rübartsch, “Model independent evaluation of overlapped Mössbauer spectra,” Journal of Physics E, vol. 7, no. 7, pp. 526–532, 1974. View at Publisher · View at Google Scholar
  149. R. A. Brand and G. Le Caër, “Improving the validity of Mössbauer hyperfine parameter distributions: the maximum entropy formalism and its applications,” Nuclear Instruments and Methods in Physics Research Section B, vol. 34, no. 2, pp. 272–284, 1988. View at Publisher · View at Google Scholar
  150. E. A. Shafranovsky and Yu. I. Petrov, “Change in a Hyperfine Field at the 57Fe Nuclei in aerosol Fe nanoparticles when adding a small chromium admixture,” Doklady Physics, vol. 54, pp. 111–114, 2009.
  151. K. P. Belov, Erscheinungen in Ferromagnetischen Metallen, Technik, Berlin, Germany, 1953.
  152. J. S. Smart, Effective Field Theories of Magnetism, W. B. Saunders, Philadelphia, Pa, USA, 1966.
  153. P. P. Craig, R. C. Perisho, R. Segnan, and W. A. Steyert, “Temperature and field dependence of hyperfine fields and magnetization in a dilute random substitutional ferromagnetic alloy: Fe2.65Pd97.35,” Physical Review, vol. 138, no. 5, pp. A1460–A1471, 1965. View at Publisher · View at Google Scholar · View at Scopus
  154. G. K. Wertheim, Mössbauer Effect. Principles and Applications, Academic Press, New York, NY, USA, 1964.
  155. R. E. Watson and A. J. Freeman, “Origin of effective fields in magnetic materials,” Physical Review, vol. 123, no. 6, pp. 2027–2047, 1961. View at Publisher · View at Google Scholar · View at Scopus