About this Journal Submit a Manuscript Table of Contents
International Journal of Medicinal Chemistry
Volume 2011 (2011), Article ID 592879, 10 pages
http://dx.doi.org/10.1155/2011/592879
Research Article

Pharmacophore Modelling and Synthesis of Quinoline-3-Carbohydrazide as Antioxidants

1Laboratoire de Biologie Cellulaire Equipe 2SBP EA4267, 4 Place Saint Jacque 25030 Besançon Cedex, France
2Laboratoire de Chimie Thérapeutique Equipe 2SBP EA4267, 4 Place Saint Jacque 25030 Besançon Cedex, France

Received 6 October 2010; Revised 16 December 2010; Accepted 21 January 2011

Academic Editor: Armando Rossello

Copyright © 2011 Mustapha El Bakkali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Behl and B. Moosmann, “Antioxidant neuroprotection in Alzheimer's disease as preventive and therapeutic approach,” Free Radical Biology and Medicine, vol. 33, no. 2, pp. 182–191, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. D. R. Coulson, B. Siobhan, J. Cathal, P. Passmore, and J. A. Johnston, “β-Secretase activity in human platelets,” Neurobiology of Aging, vol. 25, p. 358, 2004.
  3. H. Y. Zhang, D. P. Yang, and G. Y. Tang, “Multipotent antioxidants: from screening to design,” Drug Discovery Today, vol. 11, no. 15-16, pp. 749–754, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. B. J. Day, “Catalytic antioxidants: a radical approach to new therapeutics,” Drug Discovery Today, vol. 9, no. 13, pp. 557–566, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. Kettle and C. C. Winterbourn, “Myeloperoxidase: a key regulator of neutrophil oxidant product,” Redox Report, vol. 3, no. 1, pp. 3–15, 1997. View at Scopus
  6. C. Desmarchelier, G. Ciccia, and J. Coussio, “Recent advances in the search for antioxidant activity in South American plants,” Studies in Natural Products Chemistry, vol. 22, pp. 343–367, 2000. View at Publisher · View at Google Scholar
  7. P. Scartezzini and E. Speroni, “Review on some plants of Indian traditional medicine with antioxidant activity,” Journal of Ethnopharmacology, vol. 71, no. 1-2, pp. 23–43, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Kumar, R. K. Kaundal, S. Iyer, and S. S. Sharma, “Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy,” Life Sciences, vol. 80, no. 13, pp. 1236–1244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. N. K. Hall, T. M. Chapman, H. J. Kim, and D. B. Min, “Antioxidant mechanisms of Trolox and ascorbic acid on the oxidation of riboflavin in milk under light,” Food Chemistry, vol. 118, no. 3, pp. 534–539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. O. I. Aruoma, B. Halliwell, B. M. Hoey, and J. Butler, “The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid,” Free Radical Biology and Medicine, vol. 6, no. 6, pp. 593–597, 1989. View at Scopus
  11. I. B. Afanas’ev, A. I. Dorozhko, A. V. Brodskii, V. A. Kostyuk, and A. I. Potapovitch, “Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation,” Biochemical Pharmacology, vol. 38, no. 11, pp. 1763–1769, 1989. View at Scopus
  12. J. H. Mitchell, P. T. Gardner, D. B. McPhail, P. C. Morrice, A. R. Collins, and G. G. Duthie, “Antioxidant efficacy of phytoestrogens in chemical and biological model systems,” Archives of Biochemistry and Biophysics, vol. 360, no. 1, pp. 142–148, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Moret, Y. Laras, N. Pietrancosta et al., “1,1-Xylyl bis-1,4,8,11-tetraaza cyclotetradecane: a new potential copper chelator agent for neuroprotection in Alzheimer's disease. Its comparative effects with clioquinol on rat brain copper distribution,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 12, pp. 3298–3301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Benvenisti-Zarom, J. Chempand, and R. F. Regan, “The oxidative neurotoxicity of clioquinol,” Neuropharmacology, vol. 49, no. 5, pp. 687–694, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Refouvelet, C. Guyon, Y. Jacquot et al., “Synthesis of 4-hydroxycoumarin and 2,4-quinolinediol derivatives and evaluation of their effects on the viability of HepG2 cells and human hepatocytes culture,” European Journal of Medicinal Chemistry, vol. 39, no. 11, pp. 931–937, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Jacquot, A. Cleeren, I. Laios et al., “Pharmacological profile of 6,12-dihydro-3-methoxy-1-benzopyrano[3,4-b] [1,4]benzothiazin-6-one, a novel human estrogen receptor agonist,” Biological and Pharmaceutical Bulletin, vol. 25, no. 3, pp. 335–341, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Ismaili, A. Nadaradjane, L. Nicod et al., “Synthesis and antioxidant activity evaluation of new hexahydropyrimido[5,4-c]quinoline-2,5-diones and 2-thioxohexahydropyrimido[5,4-c]quinoline-5-ones obtained by Biginelli reaction in two steps,” European Journal of Medicinal Chemistry, vol. 43, no. 6, pp. 1270–1275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Dror, A. Shulman-Peleg, R. Nussinov, and H. J. Wolfson, “Predicting molecular interactions in silico—I. A guide to pharmacophore identification and its applications to drug design,” Current Medicinal Chemistry, vol. 11, no. 1, pp. 71–90, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. P. D. Lyne, P. W. Kenny, D. A. Cosgrove et al., “Identification of compounds with nanomolar binding affinity for checkpoint kinase-1 using knowledge-based virtual screening,” Journal of Medicinal Chemistry, vol. 47, no. 8, pp. 1962–1968, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Hirashima, M. Morimoto, H. Ohta, E. Kuwano, E. Taniguchi, and M. Eto, “Three-dimensional common-feature hypotheses for octopamine agonist1-arylimidazolidine-2-thiones,” International Journal of Molecular Sciences, vol. 3, no. 2, pp. 56–68, 2002. View at Scopus
  21. R. Amarowicz, R. B. Pegg, P. Rahimi-Moghaddam, B. Barl, and J. A. Weil, “Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies,” Food Chemistry, vol. 84, no. 4, pp. 551–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Siddhuraju and K. Becker, “The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L.) Walp.) seed extracts,” Food Chemistry, vol. 101, no. 1, pp. 10–19, 2006. View at Publisher · View at Google Scholar
  23. S. K. Chung, T. Osawa, and S. Kawakishi, “Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra),” Bioscience, Biotechnology and Biochemistry, vol. 61, no. 1, pp. 118–123, 1997. View at Scopus
  24. M. Nishikimi, N. A. Rao, and K. Yagi, “The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen,” Biochemical and Biophysical Research Communications, vol. 46, no. 2, pp. 849–854, 1972. View at Scopus
  25. L. Ismaïli, B. Refouvelet, and J. F. Robert, “Synthesis of new pyrazolo[4,3-c]quinolin-3-one derivatives and some oxazolo[4,5-c]quinoline-2,4-diones,” Journal of Heterocyclic Chemistry, vol. 36, no. 3, pp. 719–722, 1999. View at Scopus
  26. T. Hatano, H. Kagawa, T. Yasuhara, and T. Okuda, “Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects,” Chemical and Pharmaceutical Bulletin, vol. 36, no. 6, pp. 2090–2097, 1988. View at Scopus
  27. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, “A program for macromolecular energy, minimization, and dynamics calculations,” Journal of Computational Chemistry, vol. 4, pp. 187–214, 1983.
  28. A. Smellie, S. L. Teig, and P. Towbin, “Poling: promoting conformational variation,” Journal of Computational Chemistry, vol. 16, pp. 171–187, 1995.
  29. J. Greene, S. Kahn, H. Savoj, P. Sprague, and S. Teig, “Chemical function queries for 3D database search,” Journal of Chemical Information and Computer Sciences, vol. 34, no. 6, pp. 1297–1308, 1994. View at Scopus