About this Journal Submit a Manuscript Table of Contents
International Journal of Medicinal Chemistry
Volume 2013 (2013), Article ID 203606, 8 pages
http://dx.doi.org/10.1155/2013/203606
Research Article

Structural Stereochemistry of Androstene Hormones Determines Interactions with Human Androgen, Estrogen, and Glucocorticoid Receptors

1Department of Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
2Virginia Commonwealth University Reanimation Engineering Science Center (VCURES), Virginia Commonwealth University, Richmond, VA 23298, USA
3Department of Biochemistry, Virginia Commonwealth University, 1101 E. Marshall Street, Sanger Hall, Room 2-004, Richmond, VA 23298, USA
4Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA
5Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
6Massey Cancer Center, Richmond, VA 23298, USA
7Michigan Critical Injury and Illness Research Center, Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA
8Department of Microbiology, Immunology, Pathology and Emergency Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA

Received 17 January 2013; Revised 27 February 2013; Accepted 14 March 2013

Academic Editor: Patrick Bednarski

Copyright © 2013 Thomas L. Shaak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Dillon, “Dehydroepiandrosterone, dehydroepiandrosterone sulfate and related steroids: their role in inflammatory, allergic and immunological disorders,” Current Drug Targets, vol. 4, no. 3, pp. 377–385, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Oberbeck and P. Kobbe, “DEhydroepiandrosterone (DHEA): a steroid with multiple effects. Is there any possible option in the treatment of critical illness?” Current Medicinal Chemistry, vol. 17, no. 11, pp. 1039–1047, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. M. Loria and D. A. Padgett, “Androstenediol regulates systemic resistance against lethal infections in mice,” Annals of the New York Academy of Sciences, vol. 685, pp. 293–295, 1993. View at Scopus
  4. R. M. Loria and D. A. Padgett, “Mobilization of cutaneous immunity for systemic protection against infections,” Annals of the New York Academy of Sciences, vol. 650, pp. 363–366, 1992. View at Scopus
  5. R. M. Loria, D. A. Padgett, and P. N. Huynh, “Regulation of the immune response by dehydroepiandrosterone and its metabolites,” Journal of Endocrinology, vol. 150, pp. S209–S220, 1996. View at Scopus
  6. R. M. Loria, “Antiglucocorticoid function of androstenetriol,” Psychoneuroendocrinology, vol. 22, supplement 1, pp. S103–S108, 1997. View at Publisher · View at Google Scholar
  7. D. A. Padgett, R. M. Loria, and J. F. Sheridan, “Endocrine regulation of the immune response to influenza virus infection with a metabolite of DHEA-androstenediol,” Journal of Neuroimmunology, vol. 78, no. 1-2, pp. 203–211, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Svec and J. R. Porter, “The actions of exogenous dehydroepiandrosterone in experimental animals and humans,” Proceedings of the Society for Experimental Biology and Medicine, vol. 218, no. 3, pp. 174–191, 1998. View at Scopus
  9. C. D. Santos, M. P. A. Toldo, F. H. Santello, M. D. V. Filipin, V. Brazão, and J. C. do Prado Júnior, “Dehydroepiandrosterone increases resistance to experimental infection by Trypanosoma cruzi,” Veterinary Parasitology, vol. 153, pp. 238–243, 2008.
  10. V. R. Feeser, N. B. Menke, K. R. Ward, R. M. Loria, and R. F. Diegelmann, “Androstenediol reverses steroid-inhibited wound healing: biomedical hypothesis article,” Wound Repair and Regeneration, vol. 17, no. 5, pp. 758–761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Huynh and R. Loria, “Contrasting effects of alpha- and beta-androstenediol on oncogenic myeloid cell lines in vitro,” Journal of Leukocyte Biology, vol. 62, no. 2, pp. 258–2267, 1997.
  12. M. R. Graf, W. Jia, and R. M. Loria, “The neuro-steroid, 3β androstene 17α diol exhibits potent cytotoxic effects on human malignant glioma and lymphoma cells through different programmed cell death pathways,” British Journal of Cancer, vol. 97, no. 5, pp. 619–627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. R. Graf, W. Jia, M. L. Lewbart, and R. M. Loria, “The anti-tumor effects of androstene steroids exhibit a strict structure-activity relationship dependent upon the orientation of the hydroxyl group on carbon-17,” Chemical Biology and Drug Design, vol. 74, no. 6, pp. 625–629, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Miyamoto, S. Yeh, H. Lardy, E. Messing, and C. Chang, “δ5-Androstenediol is a natural hormone with androgenic activity in human prostate cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 19, pp. 11083–11088, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Hackenberg, I. Turgetto, A. Filmer, and K. D. Schulz, “Estrogen and androgen receptor mediated stimulation and inhibition of proliferation by androst-5-ene-3β,17β-diol in human mammary cancer cells,” Journal of Steroid Biochemistry and Molecular Biology, vol. 46, no. 5, pp. 597–603, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. C. C. Head, M. J. Farrow, J. F. Sheridan, and D. A. Padgett, “Androstenediol reduces the anti-inflammatory effects of restraint stress during wound healing,” Brain, Behavior, and Immunity, vol. 20, no. 6, pp. 590–596, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Marwah, A. Marwah, H. A. Lardy, H. Miyamoto, and C. Chang, “C19-Steroids as androgen receptor modulators: design, discovery, and structure-activity relationship of new steroidal androgen receptor antagonists,” Bioorganic and Medicinal Chemistry, vol. 14, no. 17, pp. 5933–5947, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. T. Arnold, X. Liu, J. D. Allen, H. Le, K. K. McFann, and M. R. Blackman, “Androgen receptor or estrogen receptor-β blockade alters DHEA-, DHT-, and E2-induced proliferation and PSA production in human prostate cancer cells,” Prostate, vol. 67, no. 11, pp. 1152–1162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Saijo, J. G. Collier, A. C. Li, J. A. Katzenellenbogen, and C. K. Glass, “An ADIOL-ERβ-CtBP transrepression pathway negatively regulates microglia-mediated inflammation,” Cell, vol. 145, no. 4, pp. 584–595, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. Padgett and R. M. Loria, “In vitro potentiation of lymphocyte activation by dehydroepiandrosterone, androstenediol, and androstenetriol,” The Journal of Immunology, vol. 153, no. 4, pp. 1544–1552, 1994. View at Scopus
  21. R. M. Loria and D. A. Padgett, “Androstenediol regulates systemic resistance against lethal infections in mice,” Archives of Virology, vol. 127, no. 1–4, pp. 103–115, 1992.
  22. F. Chen, K. Knecht, E. Birzin et al., “Direct agonist/antagonist functions of dehydroepiandrosterone,” Endocrinology, vol. 146, no. 11, pp. 4568–4576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. E. Baker, “Co-evolution of steroidogenic and steroid-inactivating enzymes and adrenal and sex steroid receptors,” Molecular and Cellular Endocrinology, vol. 215, no. 1-2, pp. 55–62, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. R. M. Loria and M. R. Graf, “17α-androstenediol-mediated oncophagy of tumor cells by different mechanisms is determined by the target tumor,” Annals of the New York Academy of Sciences, vol. 1262, no. 1, pp. 127–133, 2012.
  25. C. Honer, K. Nam, C. Fink et al., “Glucocorticoid receptor antagonism by cyproterone acetate and RU486,” Molecular Pharmacology, vol. 63, no. 5, pp. 1012–1020, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Matsumoto, H. Yamasaki, S. Akazawa et al., “High-dose but not low-dose dexamethasone impairs glucose tolerance by inducing compensatory failure of pancreatic β-cells in normal men,” Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 7, pp. 2621–2626, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. P. N. Huynh, W. H. Carter, and R. M. Loria, “17 Alpha androstenediol inhibition of breast tumor cell proliferation in estrogen receptor-positive and -negative cell lines,” Cancer Detection and Prevention, vol. 24, no. 5, pp. 435–444, 2000. View at Scopus
  28. R. Loria, M. Graf, W. Jia, and T. Powell, “5-androstene 3β,17α diol induces autophagic cell death of human breast cancer cells and enhances radiation cytotoxicity,” Journal of Cancer Therapeutics and Research, vol. 1, no. 1, 25 pages, 2012.