About this Journal Submit a Manuscript Table of Contents
International Journal of Molecular Imaging
Volume 2011 (2011), Article ID 356730, 6 pages
http://dx.doi.org/10.1155/2011/356730
Research Article

FDG-PET Quantification of Lung Inflammation with Image-Derived Blood Input Function in Mice

1Department of Biomedical Engineering, The University of Virginia, Charlottesville, VA 22908, USA
2Department of Physics, The University of Virginia, Charlottesville, Virginia 22908, USA
3Department of Radiology and Medical Imaging, The University of VA, Charlottesville, VA 22908, USA
4Department of Pediatrics, The University of VA, Charlottesville, Virginia 22908, USA

Received 17 June 2011; Revised 14 September 2011; Accepted 17 September 2011

Academic Editor: Adriaan Anthonius Lammertsma

Copyright © 2011 Landon W. Locke et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. A. Jones, J. B. Schofield, T. Krausz, A. R. Boobis, and C. Haslett, “Pulmonary fibrosis correlates with duration of tissue neutrophil activation,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 2, pp. 620–628, 1998. View at Scopus
  2. W. Hartwig, E. A. Carter, R. E. Jimenez et al., “Neutrophil metabolic activity but not neutrophil sequestration reflects the development of pancreatitis-associated lung injury,” Critical Care Medicine, vol. 30, no. 9, pp. 2075–2082, 2002. View at Scopus
  3. L. W. Locke, M. D. Chordia, Y. Zhang et al., “A novel neutrophil-specific PET imaging agent: cFLFLFK-PEG-64Cu,” Journal of Nuclear Medicine, vol. 50, no. 5, pp. 790–797, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. M. L. Thakur, J. P. Lavender, R. N. Arnot, D. J. Silvester, and A. W. Segal, “Indium-111-labeled autologous leukocytes in man,” Journal of Nuclear Medicine, vol. 18, no. 10, pp. 1014–1021, 1977. View at Scopus
  5. H. A. Jones, S. Sriskandan, A. M. Peters et al., “Dissociation of neutrophil emigration and metabolic activity in lobar pneumonia and bronchiectasis,” European Respiratory Journal, vol. 10, no. 4, pp. 795–803, 1997. View at Scopus
  6. L. Hansson, T. Ohlsson, S. Valind et al., “Glucose utilisation in the lungs of septic rats,” European Journal of Nuclear Medicine, vol. 26, no. 10, pp. 1340–1344, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. H. A. Jones, R. J. Clark, C. G. Rhodes, J. B. Schofield, T. Krausz, and C. Haslett, “In vivo measurement of neutrophil activity in experimental lung inflammation,” American Journal of Respiratory and Critical Care Medicine, vol. 149, no. 6, pp. 1635–1639, 1994. View at Scopus
  8. D. P. Schuster, J. Kozlowski, L. Hogue, and T. W. Ferkol, “Imaging lung inflammation in a murine model of Pseudomonas infection: a positron emission tomography study,” Experimental Lung Research, vol. 29, no. 1, pp. 45–57, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Zhou, J. Kozlowski, A. L. Goodrich, N. Markman, D. L. Chen, and D. P. Schuster, “Molecular imaging of lung glucose uptake after endotoxin in mice,” American Journal of Physiology, vol. 289, no. 5, pp. L760–L768, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. M. N. Tantawy and T. E. Peterson, “Simplified [18F]FDG image-derived input function using the left ventricle, liver, and one venous blood sample,” Molecular Imaging, vol. 9, no. 2, pp. 76–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. H. D. Fang and R. F. Muzic, “Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies,” Journal of Nuclear Medicine, vol. 49, no. 4, pp. 606–614, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. X. Zheng, G. Tian, S.-C. Huang, and D. Feng, “A hybrid clustering method for ROI delineation in small-animal dynamic PET images: application to the automatic estimation of FDG input functions,” IEEE Transactions on Information Technology in Biomedicine, vol. 15, no. 2, pp. 195–205, 2011. View at Publisher · View at Google Scholar · View at PubMed
  13. J. Kim, P. Herrero, T. Sharp et al., “Minimally invasive method of determining blood input function from PET images in rodents,” Journal of Nuclear Medicine, vol. 47, no. 2, pp. 330–336, 2006. View at Scopus
  14. H. M. Wu, G. Sui, C. C. Lee et al., “In vivo quantitation of glucose metabolism in mice using small-animal PET and a microfluidic device,” Journal of Nuclear Medicine, vol. 48, no. 5, pp. 837–845, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. S. C. Huang, H. M. Wu, K. Shoghi-Jadid et al., “Investigation of a new input function validation approach for dynamic mouse microPET studies,” Molecular Imaging and Biology, vol. 6, no. 1, pp. 34–46, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. G. Z. Ferl, X. Zhang, H. M. Wu, and S. C. Huang, “Estimation of the 18F-FDG input function in mice by use of dynamic small-animal PET and minimal blood sample data,” Journal of Nuclear Medicine, vol. 48, no. 12, pp. 2037–2045, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. R. Laforest, T. L. Sharp, J. A. Engelbach et al., “Measurement of input functions in rodents: challenges and solutions,” Nuclear Medicine and Biology, vol. 32, no. 7, pp. 679–685, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. L. W. Locke, S. S. Berr, and B. K. Kundu, “Image-derived input function from cardiac gated maximum a posteriori reconstructed PET images in mice,” Molecular Imaging and Biology, vol. 13, no. 2, pp. 342–347, 2011. View at Publisher · View at Google Scholar · View at PubMed
  19. A. Stolin, D. Pole, R. Wojcik, and M. B. Williams, “Dual-modality scanner for small animal imaging,” in IEEE Nuclear Science Symposium Conference Record, pp. 2403–2407, San Diego, Calif, USA, November 2006. View at Publisher · View at Google Scholar
  20. P. L. Chow, F. R. Rannou, and A. F. Chatziioannou, “Attenuation correction for small animal PET tomographs,” Physics in Medicine and Biology, vol. 50, no. 8, pp. 1837–1850, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. J. Qi, R. M. Leahy, S. R. Cherry, A. Chatziioannou, and T. H. Farquhar, “High-resolution 3D bayesian image reconstruction using the microPET small-animal scanner,” Physics in Medicine and Biology, vol. 43, no. 4, pp. 1001–1013, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. L. G. Strauss, A. Dimitrakopoulou-Strauss, and U. Haberkorn, “Shortened PET data acquisition protocol for the quantification of 18F-FDG kinetics,” Journal of Nuclear Medicine, vol. 44, no. 12, pp. 1933–1939, 2003. View at Scopus
  23. M. E. Phelps, S. C. Huang, and E. J. Hoffman, “Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method,” Annals of Neurology, vol. 6, no. 5, pp. 371–388, 1979.
  24. C. S. Patlak, R. G. Blasberg, and J. D. Fenstermacher, “Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data,” Journal of Cerebral Blood Flow and Metabolism, vol. 3, no. 1, pp. 1–7, 1983. View at Scopus