About this Journal Submit a Manuscript Table of Contents
International Journal of Molecular Imaging
Volume 2012 (2012), Article ID 609545, 9 pages
http://dx.doi.org/10.1155/2012/609545
Review Article

Use of FDG-PET in Radiation Treatment Planning for Thoracic Cancers

1Gunma University Heavy Ion Medical Center, Maebashi, Gunma 371-8511, Japan
2Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan

Received 14 December 2011; Revised 15 February 2012; Accepted 2 March 2012

Academic Editor: John Humm

Copyright © 2012 Katsuyuki Shirai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Radiotherapy plays an important role in the treatment for thoracic cancers. Accurate diagnosis is essential to correctly perform curative radiotherapy. Tumor delineation is also important to prevent geographic misses in radiotherapy planning. Currently, planning is based on computed tomography (CT) imaging when radiation oncologists manually contour the tumor, and this practice often induces interobserver variability. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) has been reported to enable accurate staging and detect tumor extension in several thoracic cancers, such as lung cancer and esophageal cancer. FDG-PET imaging has many potential advantages in radiotherapy planning for these cancers, because it can add biological information to conventional anatomical images and decrease the inter-observer variability. FDG-PET improves radiotherapy volume and enables dose escalation without causing severe side effects, especially in lung cancer patients. The main advantage of FDG-PET for esophageal cancer patients is the detection of unrecognized lymph node or distal metastases. However, automatic delineation by FDG-PET is still controversial in these tumors, despite the initial expectations. We will review the role of FDG-PET in radiotherapy for thoracic cancers, including lung cancer and esophageal cancer.