Review Article

Stress Responses of Shewanella

Table 1

Genes predicted to be under the direct control of σ 32 in S. oneidensis.

LocusGeneProductStartEndSequenceWeight

SO2016htpG heat shock protein HtpG−84−55CTTGAAAAGTGGATTTGCAGCCCCATTTTA20.3
SO4162hslV ATP-dependent protease HslV−83−54CTTGAATTCTGGCTATCCATCCCCATATTT20.1
SO1126dnaK chaperone protein DnaK−78−48CTTGAAAAAAAATGCGTCCGGCCCCATATCT18.6
SO0406trxA thioredoxin 1−80−51CTTGAAAAGCTATTTTTCAGCCCCAATATA18.4
SO1524grpE heat shock protein GrpE−74−45CTTGAAACGTCAAAATTGATCCCCATAATA18.2
SO2593conserved hypothetical protein−262−232CTTGAAATGGGGAGTTTAACTCCCCATTTTT17.9
SO3577clpB clpB protein−77−48CTTGAATTTGGTTAAATAGCCCCCATCTTT16.8
SO0452trxC thioredoxin 2−60−31CTTTAAATTCGCCGCAGCGCCCCCATATCT15.7
SO2017conserved hypothetical protein−106−76CTTGAGTTGAGACGCAAGTGCCCCGATTTAC14.4
SO1796lon ATP-dependent protease La−68−39ATTGAAAGGGCATAAACCGCCCCAATATAC14
SO2277ibpA 16 kDa heat shock protein A−167−138CTTGAAATCCGTTTTCCTATCCTTATATCT13.5
SO0703groES chaperonin GroES−123−93CTTGGATCTGGCGGGGGTGAACCCCATATCA13.3
SO4492conserved hypothetical protein−76−48GTTGAAAAGAATTGATTTGCCCCAAGATA12.8
SO1794clpP ATP-dependent Clp protease, proteolytic subunit−83−55CTTGACTTGATTAGCAGTTCGCCATTTAT12.8
SO1163conserved hypothetical protein−60−31CTTGAATCGGGTATAATCGCCACCATATAG12.7
SO3863modA molybdenum ABC transporter, periplasmic molybdenum-binding protein−206−177CTTGAGTAAATGTTATTGTCCCCGATCAAT12.3
SO1196rrmJ ribosomal RNA large subunit methyltransferase J−65−36GTTGAAAAACCGCTATTCTACCCTTATATA12.2
SO2723HIT family protein−47−17ATTGAATTGCTAGTATACTATCCCAATTAAC11.8
SO1213hydrolase, TatD family−240−211GTTTAAAGGCGGTGATTCACCGCCTTTTTT11.8
SO2705topA DNA topoisomerase I−77−49CTTGAAACTCTCAGTGCAACCCTCTATAT11.1
SO3501conserved hypothetical protein−297−268CATGAATTTGGCAACGGCACCGCCATTTTC11
SO2728htpX peptidase HtpX−101−71GTAGAAAAACTCTTATCTTTACCCCTTGAAT10.6
SO1473smpB SsrA-binding protein−69−39GTTGAAATAGCTCAAATAAACCCTTATATCC10.3
SO0698fsxA fxsA protein−64−34CTTGAATTAAGACCGGATTGCCCCCATTTAG10.3
SO3402hypothetical protein−396−367ATTGAAAAGGGCCTTTATGGCCCTTTTTCG10.2
SO1937fur ferric uptake regulation protein−164−135CTTGAATTGCCGCAATTTATTGCAATTTCA10.2
SO2706astB succinylarginine dihydrolase−40−11TTTGAATAAATAATAACCTTCCCTATCACA9.7
SO0868hypothetical protein−93−63GTTTAAATGGGGAGAAAACAACTCCATTTTA9.4
SO3961rpoN RNA polymerase sigma-54 factor−83−53CTTGAATTTGGCAGCGCAAAGCGCCATCAGT9.4
SO0930tkt Transketolase−161−133CTTGAATAGTTCATCCTTAAGCCATTTTT9.3
SO3528hypothetical protein−195−167AATGAAAAGAGGCTTTTAGCCTCTTTTTT9.3
SO1580TonB-dependent heme receptor−57−28CTTTGATGCCTATAATGCCGCCCTATTTTT9.3
SO2314ISSo1, transposase OrfA−227−197GTTAAAATGACAAGCATGGAGCGCAATATCT9.2
SO1903hypothetical protein−71−42TTTGGGATTATTTAATTCCCCCCCATTTAT9.2
SO1097conserved hypothetical protein−63−33CATGAAATCTGCGATAATCAGCGCCTTATTT9.2
SO0595hypothetical protein−327−298CTTGATTAGAGCCACGTCGCTCCAATTTTT9.2
SO4719conserved hypothetical protein−44−16CTAGGCATTTGAGTTGGAACCCTATTTTT9.1
SO4287motA chemotaxis motA protein−127−99CTTGAATTTAGTAGATTTTCCTTATAATG9.1
SO3113tgt queuine tRNA-ribosyltransferase−96−67GTTGAACCTTTTAGATCTGTCCCTATCTCT9

Genome screening with σ 32 weight matrix is performed using RSAT at http://rsat.ulb.ac.be/rsat/RSAT_home.cgi [23]. Genes with a weight score over 9 are shown.