About this Journal Submit a Manuscript Table of Contents
International Journal of Microbiology
Volume 2012 (2012), Article ID 579593, 9 pages
http://dx.doi.org/10.1155/2012/579593
Research Article

Electron Beam Irradiation Dose Dependently Damages the Bacillus Spore Coat and Spore Membrane

1Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
2College of Technology, Kent State University, Kent, OH 44242, USA
3College of Public Health, Kent State University, Kent, OH 44242, USA

Received 12 August 2011; Revised 13 October 2011; Accepted 14 October 2011

Academic Editor: David C. Straus

Copyright © 2012 S. E. Fiester et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Roffey, K. Lantorp, A. Tegnell, and F. Elgh, “Biological weapons and bioterrorism preparedness: importance of public-health awareness and international cooperation,” Clinical Microbiology and Infection, vol. 8, no. 8, pp. 522–528, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. T. J. Cieslak and E. M. Eitzen Jr., “Clinical and epidemiologic principles of anthrax,” Emerging Infectious Diseases, vol. 5, no. 4, pp. 552–555, 1999. View at Scopus
  3. D. B. Jernigan, P. L. Raghunathan, B. P. Bell et al., “Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings,” Emerging Infectious Diseases, vol. 8, no. 10, pp. 1019–1028, 2002. View at Scopus
  4. P. Setlow, “Spore germination,” Current Opinion in Microbiology, vol. 6, no. 6, pp. 550–556, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. D. A. Canter, “Remediating sites with anthrax contamination: building on experience,” in Proceedings of the Air and Waste Management Association/US EPA Specialty Conference on Indoor Air Quality Problems and Engineering Solution, Research Triangle Park, NC, USA, 2003.
  6. D. J. Hanson, “Zapping the mail,” Chemical & Engineering News, vol. 80, no. 11, pp. 30–32, 2002.
  7. R. S. Benson, “Use of radiation in biomaterials science,” Nuclear Instruments and Methods in Physics Research B, vol. 191, no. 1–4, pp. 752–757, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Satin, “Use of irradiation for microbial decontamination of meat: situation and perspectives,” Meat Science, vol. 62, no. 3, pp. 277–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. S. L. Helfinstine, C. Vargas-Aburto, R. M. Uribe, and C. J. Woolverton, “Inactivation of Bacillus endospores in envelopes by electron beam irradiation,” Applied and Environmental Microbiology, vol. 71, no. 11, pp. 7029–7032, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. J. De Lara, P. S. Fernández, P. M. Periago, and A. Palop, “Irradiation of spores of Bacillus cereus and Bacillus subtilis with electron beams,” Innovative Food Science and Emerging Technologies, vol. 3, no. 4, pp. 379–384, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Ohki, H. Ito, Y. Watanabe, et al., “Comparative sensitivity of endospores from some Bacillus species to gamma rays, X-rays and electron beam for sterilization,” Food Irradiation Japan, vol. 25, pp. 71–74, 1990.
  12. S. J. C. Van Gerwen, F. M. Rombouts, K. V. Riet, and M. H. Zwietering, “A data analysis of the irradiation parameter for bacteria and spores under various conditions,” Journal of Food Protection, vol. 62, no. 9, pp. 1024–1032, 1999. View at Scopus
  13. J. David Monk, L. R. Beuchat, and M. P. Doyle, “Irradiation inactivation of food-borne microorganisms,” Journal of Food Protection, vol. 58, no. 2, pp. 197–208, 1995. View at Scopus
  14. U. Micke, G. Horneck, and S. Kozubek, “Double strand breaks in the DNA of Bacillus subtilis cells irradiated by heavy ions,” Advances in Space Research, vol. 14, no. 10, pp. 207–211, 1994. View at Scopus
  15. F. Hutchinson, “Chemical changes induced in DNA by ionizing radiation,” Progress in Nucleic Acid Research and Molecular Biology, vol. 32, no. C, pp. 115–154, 1985. View at Publisher · View at Google Scholar · View at Scopus
  16. U. Micke, M. Schäfer, A. Anton, G. Horneck, and H. Bücker, “Heavy ion induced double strand breaks in bacteria and bacteriophages,” Advances in Space Research, vol. 12, no. 2-3, pp. 59–63, 1992. View at Scopus
  17. J. Cadet, T. Delatour, T. Douki et al., “Hydroxyl radicals and DNA base damage,” Mutation Research, vol. 424, no. 1-2, pp. 9–21, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Moeller, P. Setlow, G. Horneck et al., “Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment,” Journal of Bacteriology, vol. 190, no. 3, pp. 1134–1140, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. V. G. R. Chada, E. A. Sanstad, R. Wang, and A. Driks, “Morphogenesis of Bacillus spore surfaces,” Journal of Bacteriology, vol. 185, no. 21, pp. 6255–6261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. A. O. Henriques and C. P. Moran, “Structure and assembly of the bacterial endospore coat,” Methods, vol. 20, no. 1, pp. 95–110, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. A. Driks, “Proteins of the Spore Core and Coat. Bacillus subtilis and its Closest Relatives: from Genes to Cells,” ASM Press, Washington, DC, USA, 2002.
  22. E. M. Lai, N. D. Phadke, M. T. Kachman et al., “Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis,” Journal of Bacteriology, vol. 185, no. 4, pp. 1443–1454, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. E. A. Spotts Whitney, M. E. Beatty, T. H. Taylor et al., “Inactivation of Bacillus anthracis spores,” Emerging Infectious Diseases, vol. 9, no. 6, pp. 623–627, 2003. View at Scopus
  24. P. J. Riesenman and W. L. Nicholson, “Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation,” Applied and Environmental Microbiology, vol. 66, no. 2, pp. 620–626, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. P. J. Piggot and D. W. Hilbert, “Sporulation of Bacillus subtilis,” Current Opinion in Microbiology, vol. 7, no. 6, pp. 579–586, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. P. Setlow, “Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals,” Journal of Applied Microbiology, vol. 101, no. 3, pp. 514–525, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. D. E. Cortezzo and P. Setlow, “Analysis of factors that influence the sensitivity of spores of Bacillus subtilis to DNA damaging chemicals,” Journal of Applied Microbiology, vol. 98, no. 3, pp. 606–617, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. R. Kuwana, Y. Kasahara, M. Fujibayashi, H. Takamatsu, N. Ogasawara, and K. Watabe, “Proteomics characterization of novel spore proteins of Bacillus subtilis,” Microbiology, vol. 148, no. 12, pp. 3971–3982, 2002. View at Scopus
  29. C. Ash, J. A. E. Farrow, S. Wallbanks, and M. D. Collins, “Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences,” Letters in Applied Microbiology, vol. 13, no. 4, pp. 202–206, 1991. View at Scopus
  30. M. P. Buttner, P. Cruz, L. D. Stetzenbach, A. K. Klima-Comba, V. L. Stevens, and T. D. Cronin, “Determination of the efficacy of two building decontamination strategies by surface sampling with culture and quantitative PCR analysis,” Applied and Environmental Microbiology, vol. 70, no. 8, pp. 4740–4747, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. P. M. Borick and M. G. Fogarty, “Effects of continuous and interrupted radiation on microorganisms,” Applied Microbiology, vol. 15, no. 4, pp. 785–789, 1967. View at Scopus
  32. ISO/ASTM51540-09, Standard Practices for use of Radiochromic Liquid Dosimetry System, ASTM International, West Conshohocken, Pa, USA, 2009.
  33. A. D. Warth, “Relationship between the heat resistance of spores and the optimum and maximum growth temperatures of Bacillus species,” Journal of Bacteriology, vol. 134, no. 3, pp. 699–705, 1978. View at Scopus
  34. A. Mathys, B. Chapman, M. Bull, V. Heinz, and D. Knorr, “Flow cytometric assessment of Bacillus spore response to high pressure and heat,” Innovative Food Science and Emerging Technologies, vol. 8, no. 4, pp. 519–527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. V. L. Auslender, V. A. Vedernikov, M. A. Grachev et al., “Sterilization of mail by means of an electron beam accelerator,” Doklady Biological Sciences, vol. 385, pp. 306–309, 2002. View at Scopus
  36. S. E. Niebuhr and J. S. Dickson, “Destruction of Bacillus anthracis strain Sterne 34F2 spores in postal envelopes by exposure to electron beam irradiation,” Letters in Applied Microbiology, vol. 37, no. 1, pp. 17–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Melly, A. E. Cowan, and P. Setlow, “Studies on the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide,” Journal of Applied Microbiology, vol. 93, no. 2, pp. 316–325, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Tallentire, R. L. Maughan, B. D. Michael, et al., “Radiobiological evidence for the existence of a dehydrated core in bacterial spores,” in Spore Research 1976, A. N. Barker, Ed., pp. 649–659, Academic Press, London, UK, 1976.
  39. A. Tallentire and E. L. Powers, “Modification of sensitivity to X-irradiation by water in Bacillus megaterium,” Radiation Research, vol. 20, pp. 270–287, 1963.
  40. E. L. Powers, M. Cross, and M. Simic, “H2O2 and OH radicals in radiation inactivation of bacterial spores,” International Journal of Radiation Biology, vol. 22, no. 3, pp. 237–243, 1972. View at Scopus
  41. D. A. Fisher and I. J. Pflug, “Effect of combined heat and radiation on microbial destruction,” Applied and Environmental Microbiology, vol. 33, no. 5, pp. 1170–1176, 1977. View at Scopus