About this Journal Submit a Manuscript Table of Contents
International Journal of Microbiology
Volume 2013 (2013), Article ID 312146, 6 pages
http://dx.doi.org/10.1155/2013/312146
Research Article

Antioxidant Functions of Nitric Oxide Synthase in a Methicillin Sensitive Staphylococcus aureus

Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, 800 West Jefferson Street, Kirksville, MO 63501, USA

Received 22 January 2013; Accepted 11 March 2013

Academic Editor: John Tagg

Copyright © 2013 Manisha Vaish and Vineet K. Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Mediavilla, L. Chen, B. Mathema, and B. N. Kreiswirth, “Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA),” Current Opinion in Microbiology, vol. 15, no. 5, pp. 588–595, 2012. View at Publisher · View at Google Scholar
  2. E. Stenehjem and D. Rimland, “MRSA nasal colonization burden and risk of MRSA infection,” American Journal of Infection Control, 2012. View at Publisher · View at Google Scholar
  3. R. R. Watkins, M. Z. David, and R. A. Salata, “Current concepts on the virulence mechanisms of meticillin-resistant Staphylococcus aureus,” Journal of Medical Microbiology, vol. 61, part 9, pp. 1179–1193, 2012. View at Publisher · View at Google Scholar
  4. F. D. Lowy, “Medical progress: Staphylococcus aureus infections,” The New England Journal of Medicine, vol. 339, no. 8, pp. 520–532, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Rivera and H. W. Boucher, “Current concepts in antimicrobial therapy against select gram-positive organisms: methicillin-resistant Staphylococcus aureus, penicillin-resistant pneumococci, and vancomycin-resistant enterococci,” Mayo Clinic Proceedings, vol. 86, no. 12, pp. 1230–1243, 2011. View at Publisher · View at Google Scholar
  6. F. C. Fang, “Antimicrobial reactive oxygen and nitrogen species: concepts and controversies,” Nature Reviews Microbiology, vol. 2, no. 10, pp. 820–832, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. K. Ferrari, P. C. Souto, E. L. França, and A. C. Honorio-França, “Oxidative and nitrosative stress on phagocytes' function: from effective defense to immunity evasion mechanisms,” Archivum Immunologiae et Therapia Experimentalis, vol. 59, no. 6, pp. 441–448, 2011. View at Publisher · View at Google Scholar
  8. J. MacMicking, Q. W. Xie, and C. Nathan, “Nitric oxide and macrophage function,” Annual Review of Immunology, vol. 15, pp. 323–350, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Voyich, K. R. Braughton, D. E. Sturdevant et al., “Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils,” Journal of Immunology, vol. 175, no. 6, pp. 3907–3919, 2005. View at Scopus
  10. F. R. DeLeo, B. A. Diep, and M. Otto, “Host defense and pathogenesis in Staphylococcus aureus infections,” Infectious Disease Clinics of North America, vol. 23, no. 1, pp. 17–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Y. Liu, “Molecular pathogenesis of Staphylococcus aureus infection,” Pediatric Research, vol. 65, no. 5, part 2, pp. 71R–77R, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. P. Chakraborty, P. Pramanik, and S. Roy, “Staphylococcus aureus infection induced oxidative imbalance in neutrophils: possible protective role of nanoconjugated vancomycin,” ISRN Pharmacol, vol. 2012, Article ID 435214, 2012.
  13. J. Kopincova, A. Puzserova, and I. Bernatova, “Biochemical aspects of nitric oxide synthase feedback regulation by nitric oxide,” Interdisciplinary Toxicology, vol. 4, no. 2, pp. 63–68, 2011.
  14. S. Mariotto, M. Menegazzi, and H. Suzuki, “Biochemical aspects of nitric oxide,” Current Pharmaceutical Design, vol. 10, no. 14, pp. 1627–1645, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. B. R. Crane, “The enzymology of nitric oxide in bacterial pathogenesis and resistance,” Biochemical Society Transactions, vol. 36, part 6, pp. 1149–1154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. L. E. Bird, J. Ren, J. Zhang et al., “Crystal structure of SANOS, a bacterial nitric oxide synthase oxygenase protein from Staphylococcus aureus,” Structure, vol. 10, no. 12, pp. 1687–1696, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Brunel, J. Santolini, and P. Dorlet, “Electron paramagnetic resonance characterization of tetrahydrobiopterin radical formation in bacterial nitric oxide synthase compared to mammalian nitric oxide synthase,” Biophysical Journal, vol. 103, no. 1, pp. 109–117, 2012. View at Publisher · View at Google Scholar
  18. K. Pant, A. M. Bilwes, S. Adak, D. J. Stuehr, and B. R. Crane, “Structure of a nitric oxide synthase heme protein from Bacillus subtilis,” Biochemistry, vol. 41, no. 37, pp. 11071–11079, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Gusarov and E. Nudler, “NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 39, pp. 13855–13860, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Shatalin, I. Gusarov, E. Avetissova et al., “Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 3, pp. 1009–1013, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. N. M. van Sorge, F. C. Beasley, I. Gusarov, et al., “Methicillin-resistant Staphylococcus aureus bacterial nitric oxide synthase affects antibiotic sensitivity and skin abscess development,” The Journal of Biological Chemistry, 2013. View at Publisher · View at Google Scholar
  22. M. J. Horsburgh, J. L. Aish, I. J. White, L. Shaw, J. K. Lithgow, and S. J. Foster, “δb modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4,” Journal of Bacteriology, vol. 184, no. 19, pp. 5457–5467, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. D. A. Mead, E. Szczesna-Skorupa, and B. Kemper, “Single-stranded DNA “blue” t7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering,” Protein Engineering, Design and Selection, vol. 1, no. 1, pp. 67–74, 1986. View at Publisher · View at Google Scholar · View at Scopus
  24. V. K. Singh, D. S. Hattangady, E. S. Giotis et al., “Insertional inactivation of branched-chain α-keto acid dehydrogenase in Staphylococcus aureus leads to decreased branched-chain membrane fatty acid content and increased susceptibility to certain stresses,” Applied and Environmental Microbiology, vol. 74, no. 19, pp. 5882–5890, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. V. K. Singh, S. Utaida, L. S. Jackson, R. K. Jayaswal, B. J. Wilkinson, and N. R. Chamberlain, “Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus,” Microbiology, vol. 153, no. 9, pp. 3162–3173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Augustin, R. Rosenstein, B. Wieland et al., “Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis,” European Journal of Biochemistry, vol. 204, no. 3, pp. 1149–1154, 1992. View at Scopus
  27. V. K. Singh, M. Syring, A. Singh, K. Singhal, A. Dalecki, and T. Johansson, “An insight into the significance of the DnaK heat shock system in Staphylococcus aureus,” International Journal of Medical Microbiology, vol. 302, no. 6, pp. 242–252, 2012. View at Publisher · View at Google Scholar
  28. V. K. Singh, R. K. Jayaswal, and B. J. Wilkinson, “Cell wall-active antibiotic induced proteins of Staphylococcus aureus identified using a proteomic approach,” FEMS Microbiology Letters, vol. 199, no. 1, pp. 79–84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. S. J. Collins, “The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression,” Blood, vol. 70, no. 5, pp. 1233–1244, 1987. View at Scopus
  30. C. Tarella, D. Ferrero, and E. Gallo, “Induction of differentiation of HL-60 cells by dimethyl sulfoxide: evidence for a stochastic model not linked to the cell division cycle,” Cancer Research, vol. 42, no. 2, pp. 445–449, 1982. View at Scopus