Abstract

We give a simple formula for the Fourier coefficients of some degree-two Siegel cusp form with level p.

1. Introduction

In the previous paper [1], the second and the third authors introduced a simple construction of a Siegel cusp form of degree 2. This construction has an advantage because the Fourier coefficients are explicitly computable. After this work was completed, Kikuta and Mizuno proved that the 𝑝-adic limit of a sequence of the aforementioned cusp forms becomes a Siegel cusp form of degree 2 with level 𝑝.

In this paper, we give an explicit description of the Fourier expansion of such a form. This result shows that the cusp form becomes a nonzero cusp form of weight 2 on Ξ“20(𝑝) if 𝑝>7 and 𝑝≑3  (mod4).

2. Siegel Modular Forms of Degree 2

We start by recalling the basic facts of Siegel modular forms.

The Siegel upper half-space of degree 2 is defined by ℍ2ξ€½βˆΆ=𝑍=𝑋+π‘–π‘ŒβˆˆSym2ξ€Ύ(β„‚)βˆ£π‘Œ>0(positive-definite).(2.1) Then the degree 2 Siegel modular group Ξ“2∢=Sp2(β„€) acts on ℍ2 discontinuously. For a congruence subgroup Ξ“ξ…žβŠ‚Ξ“2, we denote by π‘€π‘˜(Ξ“ξ…ž) (resp., π‘†π‘˜(Ξ“ξ…ž)) the corresponding space of Siegel modular forms (resp., cusp forms) of weight π‘˜.

We will be mainly concerned with the Siegel modular group Ξ“2 and the congruence subgroup Ξ“20⎧βŽͺ⎨βŽͺβŽ©βŽ›βŽœβŽœβŽβŽžβŽŸβŽŸβŽ (𝑁)∢=π΄π΅πΆπ·βˆˆΞ“2⎫βŽͺ⎬βŽͺβŽ­βˆ£πΆβ‰‘π‘‚(mod𝑁).(2.2) In both cases, πΉβˆˆπ‘€π‘˜(Ξ“ξ…ž) has a Fourier expansion of the form 𝐹(𝑍)=0β‰€π‘‡βˆˆΞ›2[],π‘Ž(𝑇;𝐹)exp2πœ‹π‘–tr(𝑇𝑍)(2.3) where Ξ›2ξ€½ξ€·π‘‘βˆΆ=𝑇=π‘–π‘—ξ€ΈβˆˆSym2(β„š)βˆ£π‘‘11,𝑑22,2𝑑12ξ€Ύ,βˆˆβ„€(2.4) and π‘Ž(𝑇;𝐹) is the Fourier coefficient of 𝐹 at 𝑇.

3. Siegel Cusp Form of Degree 2

In the previous paper [1], we constructed a cusp form π‘“π‘˜βˆˆπ‘†π‘˜(Ξ“2) whose Fourier coefficients are explicitly computable. We review the result.

First, we recall the definition of Cohen’s function. Cohen defined an arithmetical function 𝐻(π‘Ÿ,𝑁) (π‘Ÿ,π‘βˆˆβ„€β‰₯0) in [2]. In the case that π‘Ÿ and 𝑁 satisfy (βˆ’1)π‘Ÿπ‘=𝐷⋅𝑓2 where 𝐷 is a fundamental discriminant and π‘“βˆˆβ„•, the function is given by 𝐻(π‘Ÿ,𝑁)=𝐿1βˆ’π‘Ÿ,πœ’π·ξ€Έξ“0<𝑑|π‘“πœ‡(𝑑)πœ’π·(𝑑)π‘‘π‘Ÿβˆ’1𝜎2π‘Ÿβˆ’1𝑓𝑑.(3.1) Here, 𝐿(𝑠,πœ’) is the Dirichlet 𝐿-function with character πœ’, and πœ‡ is the MΓΆbius function. For the precise definition of 𝐻(π‘Ÿ,𝑁), see [2, page 272].

Secondly, we introduce Krieg’s function 𝐺(𝑠,𝑁) (𝑠,π‘βˆˆβ„€β‰₯0) associated with the Gaussian field β„š(𝑖). Let πœ’βˆ’4 be the Kronecker character associated with β„š(𝑖). Krieg’s function 𝐺(𝑠,𝑁)=πΊβ„š(𝑖)(𝑠,𝑁) over β„š(𝑖) is defined by ⎧βŽͺ⎨βŽͺ⎩1𝐺(𝑠,𝑁)∢=||πœ’1+βˆ’4||ξ€·πœŽ(𝑁)𝑠,πœ’βˆ’4(𝑁)βˆ’ξ‚πœŽπ‘ ,πœ’βˆ’4ξ€Έβˆ’π΅(𝑁),if𝑁>0,𝑠+1,πœ’βˆ’42(𝑠+1),if𝑁=0,(3.2) where π΅π‘š,πœ’ is the generalized Bernoulli number with character πœ’, πœŽπ‘ ,πœ’βˆ’4(𝑁)∢=0<𝑑|π‘πœ’βˆ’4(𝑑)𝑑𝑠,ξ‚πœŽπ‘ ,πœ’βˆ’4(𝑁)∢=0<𝑑|π‘πœ’βˆ’4𝑁𝑑𝑑𝑠.(3.3) This function was introduced by Krieg [3] to describe the Fourier coefficients of Hermitian Eisenstein series of degree 2.

The following theorem is one of the main results in [1].

Theorem 3.1. There exists a Siegel cusp form π‘“π‘˜βˆˆπ‘†π‘˜(Ξ“2) whose Fourier coefficients π‘Ž(𝑇;π‘“π‘˜) are given as follows: π‘Žξ€·π‘‡;π‘“π‘˜ξ€Έ=0<𝑑|πœ€(𝑇)π‘‘π‘˜βˆ’1π›Όπ‘˜ξ‚΅4det(𝑇)𝑑2ξ‚Ά,(3.4) where π›Όπ‘˜(𝐡𝑁)∢=𝐻(π‘˜βˆ’1,𝑁)βˆ’2π‘˜βˆ’2π΅π‘˜βˆ’1,πœ’βˆ’4ξ“π‘ π‘ βˆˆβ„€2β‰€π‘πΊξ€·π‘˜βˆ’2,π‘βˆ’π‘ 2ξ€Έ,ξ€½πœ€(𝑇)∢=maxπ‘™βˆˆβ„•βˆ£π‘™βˆ’1π‘‡βˆˆΞ›2ξ€Ύ.(3.5) Here, π΅π‘š is the π‘šth Bernoulli number.

Remark 3.2. The above result shows that the cusp form π‘“π‘˜ is a form in the Maass space (cf. [1]).

4. 𝑝-Adic Siegel Modular Forms

The cusp form π‘“π‘˜ introduced in Theorem 3.1 was constructed by the difference between the Siegel Eisenstein series πΈπ‘˜ and the restriction of the Hermitian Eisenstein series πΈπ‘˜,β„š(𝑖): π‘“π‘˜=π‘π‘˜β‹…ξ€·πΈπ‘˜βˆ’πΈπ‘˜,β„š(𝑖)||ℍ2ξ€Έ,(4.1) for some π‘π‘˜βˆˆβ„š. The 𝑝-adic properties of the Eisenstein series πΈπ‘˜ and πΈπ‘˜,β„š(𝑖) are studied by the second author (cf. [4, 5]). After our work [1] was completed, Kikuta and Mizuno studied 𝑝-adic properties of our form π‘“π‘˜. The following statement is a special case in [6].

Theorem 4.1. Let 𝑝 be a prime number satisfying 𝑝≑3(mod4), and {π‘˜π‘š} is the sequence defined by π‘˜π‘š=π‘˜π‘š(𝑝)∢=2+(π‘βˆ’1)π‘π‘šβˆ’1.(4.2) Then there exists the 𝑝-adic limit π‘“βˆ—π‘βˆΆ=limπ‘šβ†’βˆžπ‘“π‘˜π‘š,(4.3) and π‘“βˆ—π‘ represents a cusp form of weight 2 with level 𝑝, that is, π‘“βˆ—π‘βˆˆπ‘†2ξ€·Ξ“20ξ€Έ.(𝑝)(4.4)

Remark 4.2. (1) The 𝑝-adic convergence of modular forms is interpreted as the convergence of the Fourier coefficients.
(2) Kikuta and Mizuno studied a similar problem under more general situation. They noted that if we take the sequence {π‘˜π‘š} with π‘˜π‘š=π‘˜+(π‘βˆ’1)π‘π‘šβˆ’1, π‘˜βˆˆβ„• (π‘˜>4), then limπ‘šβ†’βˆžπ‘“π‘˜π‘š is no longer a cusp form [6, Theorem 1.7].
(3) The cuspidality of π‘“βˆ—π‘ essentially results from the fact that there are no nontrivial modular forms of weight 2 on the full modular group Ξ“2.

5. Main Result

In this section, we give an explicit formula for the Fourier coefficients of π‘“βˆ—π‘.

To describe π‘Ž(𝑇;π‘“βˆ—π‘), we will introduce two functions π»βˆ—π‘ and πΊβˆ—π‘.

First, for π‘βˆˆβ„• with 𝑁≑0or3(mod4), we write 𝑁 as 𝑁=βˆ’π·β‹…π‘“2 where 𝐷 is a fundamental discriminant and π‘“βˆˆβ„•. Then, we define π»βˆ—π‘ξ€·(𝑁)∢=βˆ’1βˆ’πœ’π·ξ€Έπ΅(𝑝)1,πœ’π·ξ“0<𝑑|𝑓(𝑑,𝑝)=1πœ‡(𝑑)πœ’π·(𝑑)πœŽβˆ—1𝑓𝑑,(5.1) where πœŽβˆ—1(ξ“π‘š)=0<𝑑|π‘š(𝑑,𝑝)=1𝑑.(5.2) Secondly, for π‘βˆˆβ„€β‰₯0, we define πΊβˆ—π‘βŽ§βŽͺ⎨βŽͺ⎩(𝑁)∢=1βˆ’(βˆ’1)ord𝑝(𝑁)||πœ’1+βˆ’4||𝜎(𝑁)βˆ—0,πœ’βˆ’41(𝑁),if𝑁>0,2,if𝑁=0,(5.3) where πœŽβˆ—0,πœ’βˆ’4(𝑁)=0<𝑑|𝑁(𝑑,𝑝)=1πœ’βˆ’4(𝑑).(5.4)

Remark 5.1. From the definition, the following holds: πΊβˆ—π‘(𝑁)=0ifπ‘βˆ€π‘.(5.5)

The main theorem of this paper can be stated as follows.

Theorem 5.2. Let 𝑝 be a prime number satisfying 𝑝≑3(mod4). Then the Fourier coefficients π‘Ž(𝑇;π‘“βˆ—π‘) of π‘“βˆ—π‘βˆˆπ‘†2(Ξ“20(𝑝)) are given by π‘Žξ€·π‘‡;π‘“βˆ—π‘ξ€Έ=0<𝑑|πœ€(𝑇)(𝑑,𝑝)=1π‘‘π›Όβˆ—π‘ξ‚΅4det(𝑇)𝑑2ξ‚Ά,(5.6) where π›Όβˆ—π‘(𝑁)∢=π»βˆ—π‘(𝑁)βˆ’π‘βˆ’16ξ“π‘ π‘ βˆˆβ„€2β‰€π‘πΊβˆ—π‘ξ€·π‘βˆ’π‘ 2ξ€Έ.(5.7) Here, π»βˆ—π‘ and πΊβˆ—π‘ are the functions defined in (5.1) and (5.3), respectively.

From Theorems 3.1 and 4.1, the proof of Theorem 5.2 is reduced to show that limπ‘šβ†’βˆžπ›Όπ‘˜π‘š(𝑁)=π›Όβˆ—π‘(𝑁).(5.8)

We proceed the proof of (5.8) step by step.

Lemma 5.3. Consider the following: limπ‘šβ†’βˆžπ»ξ€·π‘˜π‘šξ€Έβˆ’1,𝑁=π»βˆ—π‘(𝑁).(5.9)

Proof. Under the description 𝑁=βˆ’π·β‹…π‘“2, we can write 𝐻(π‘˜π‘šβˆ’1,𝑁) as π»ξ€·π‘˜π‘šξ€Έπ΅βˆ’1,𝑁=βˆ’π‘˜π‘šβˆ’1,πœ’π·π‘˜π‘šξ“βˆ’10<𝑑|π‘“πœ‡(𝑑)πœ’π·(𝑑)π‘‘π‘˜π‘šβˆ’2𝜎2π‘˜π‘šβˆ’3𝑓𝑑,(5.10) (cf. (3.1)).
Using Kummer’s congruence, we obtain limπ‘šβ†’βˆžπ΅π‘˜π‘šβˆ’1,πœ’π·π‘˜π‘š=ξ€·βˆ’11βˆ’πœ’π·ξ€Έπ΅(𝑝)1,πœ’π·.(5.11) On the other hand, we have limπ‘šβ†’βˆžξ“0<𝑑|π‘“πœ‡(𝑑)πœ’π·(𝑑)π‘‘π‘˜π‘šβˆ’2𝜎2π‘˜π‘šβˆ’3𝑓𝑑=0<𝑑|𝑓(𝑑,𝑝)=1πœ‡(𝑑)πœ’π·(𝑑)πœŽβˆ—1𝑓𝑑,(5.12) because limπ‘šβ†’βˆžπ‘‘π‘˜π‘šβˆ’2=ξ‚»1,ifπ‘βˆ€π‘‘,0,ifπ‘βˆ£π‘‘,limπ‘šβ†’βˆžπœŽ2π‘˜π‘šβˆ’3(𝑙)=limπ‘šβ†’βˆžξ“0<𝑑|𝑙𝑑1+2(π‘βˆ’1)π‘π‘šβˆ’1=0<𝑑|𝑙(𝑑,𝑝)=1𝑑=πœŽβˆ—1(𝑙),(π‘™βˆˆβ„•).(5.13) This proves (5.9).

Lemma 5.4. Consider the following: limπ‘šβ†’βˆžπ΅2π‘˜π‘šβˆ’2π΅π‘˜π‘šβˆ’1,πœ’βˆ’4ξ“π‘ π‘ βˆˆβ„€2β‰€π‘πΊξ€·π‘˜π‘šβˆ’2,π‘βˆ’π‘ 2ξ€Έ=π‘βˆ’16ξ“π‘ π‘ βˆˆβ„€2β‰€π‘πΊβˆ—π‘ξ€·π‘βˆ’π‘ 2ξ€Έ.(5.14)

Proof. First, we calculate the factor of Bernoulli numbers. Again by Kummer’s congruence, we obtain limπ‘šβ†’βˆžπ΅2π‘˜π‘šβˆ’2π΅π‘˜π‘šβˆ’1,πœ’βˆ’4=2limπ‘šβ†’βˆžπ΅2π‘˜π‘šβˆ’22π‘˜π‘šβ‹…π‘˜βˆ’2π‘šβˆ’1π΅π‘˜π‘šβˆ’1,πœ’βˆ’4𝐡=2β‹…(1βˆ’π‘)β‹…22β‹…1ξ€·1βˆ’πœ’βˆ’4𝐡(𝑝)1,πœ’βˆ’4=π‘βˆ’16.(5.15) Here, we used the facts that πœ’βˆ’4(𝑝)=βˆ’1 and 𝐡1,πœ’βˆ’4=βˆ’1/2.
Next we calculate limπ‘šβ†’βˆžξ“π‘ π‘ βˆˆβ„€2β‰€π‘πΊξ€·π‘˜π‘šβˆ’2,π‘βˆ’π‘ 2ξ€Έ.(5.16) If π‘β€²βˆΆ=π‘βˆ’π‘ 2>0, then πΊξ€·π‘˜π‘šβˆ’2,π‘ξ…žξ€Έ=1||πœ’1+βˆ’4ξ€·π‘ξ…žξ€Έ||ξ€·πœŽπ‘˜π‘šβˆ’2,πœ’βˆ’4ξ€·π‘ξ…žξ€Έβˆ’ξ‚πœŽπ‘˜π‘šβˆ’2,πœ’βˆ’4ξ€·π‘ξ…ž,ξ€Έξ€Έ(5.17) (cf. (3.2)). Therefore, we need to calculate limπ‘šβ†’βˆžπœŽπ‘˜π‘šβˆ’2,πœ’βˆ’4ξ€·π‘ξ…žξ€Έ,limπ‘šβ†’βˆžξ‚πœŽπ‘˜π‘šβˆ’2,πœ’βˆ’4ξ€·π‘ξ…žξ€Έ.(5.18) We have limπ‘šβ†’βˆžπœŽπ‘˜π‘šβˆ’2,πœ’βˆ’4ξ€·π‘ξ…žξ€Έ=limπ‘šβ†’βˆžξ“0<𝑑|π‘β€²πœ’βˆ’4(𝑑)𝑑(π‘βˆ’1)π‘π‘šβˆ’1=0<𝑑|𝑁′(𝑑,𝑝)=1πœ’βˆ’4(𝑑).(5.19) To calculate limπ‘šβ†’βˆžξ‚πœŽπ‘˜π‘šβˆ’2,πœ’βˆ’4(π‘ξ…ž), we write 𝑁′ as π‘ξ…ž=π‘π‘’β‹…π‘ξ…žξ…ž, (𝑝,π‘ξ…žξ…ž)=1, namely, 𝑒=ord𝑝(π‘ξ…ž). Then we have limπ‘šβ†’βˆžξ‚πœŽπ‘˜π‘šβˆ’2,πœ’βˆ’4ξ€·π‘ξ…žξ€Έ=limπ‘šβ†’βˆžξ“0<𝑑|π‘β€²πœ’βˆ’4ξ‚΅π‘ξ…žπ‘‘ξ‚Άπ‘‘(π‘βˆ’1)π‘π‘šβˆ’1=0<𝑑|π‘β€²β€²πœ’βˆ’4ξ€·π‘π‘’β‹…π‘ξ…žξ…žξ€Έ=ξ€·πœ’βˆ’4ξ€Έ(𝑝)𝑒0<𝑑|𝑁′(𝑑,𝑝)=1ξ“πœ’βˆ’4(𝑑).(5.20) Combining these formulas, we obtain limπ‘šβ†’βˆžξ€·πœŽπ‘˜π‘šβˆ’2,πœ’βˆ’4ξ€·π‘ξ…žξ€Έβˆ’ξ‚πœŽπ‘˜π‘šβˆ’2,πœ’βˆ’4ξ€·π‘ξ…ž=ξ‚€ξ€·πœ’ξ€Έξ€Έ1βˆ’βˆ’4ξ€Έ(𝑝)ord𝑝(𝑁′)0<𝑑|𝑁′(𝑑,𝑝)=1πœ’βˆ’4=ξ‚€(𝑑)1βˆ’(βˆ’1)ord𝑝(𝑁′)ξ‚πœŽβˆ—0,πœ’βˆ’4ξ€·π‘ξ…žξ€Έ.(5.21) If 𝑁′=π‘βˆ’π‘ 2=0, then πΊξ€·π‘˜π‘šξ€Έπ΅βˆ’2,0=βˆ’π‘˜π‘šβˆ’1,πœ’βˆ’42ξ€·π‘˜π‘šξ€Έ.βˆ’1(5.22) Thus, we get limπ‘šβ†’βˆžπΊξ€·π‘˜π‘šξ€Έξ€·βˆ’2,0=βˆ’1βˆ’πœ’βˆ’4𝐡(𝑝)1,πœ’βˆ’42=12.(5.23) Consequently, limπ‘šβ†’βˆžξ“π‘ π‘ βˆˆβ„€2β‰€π‘πΊξ€·π‘˜π‘šβˆ’2,π‘βˆ’π‘ 2ξ€Έ=ξ“π‘ π‘ βˆˆβ„€2β‰€π‘πΊβˆ—π‘ξ€·π‘βˆ’π‘ 2ξ€Έ.(5.24) The identity (5.14) immediately follows due to these formulas.

The proof of Theorem 5.2 is completed by combining Lemmas 5.3 and 5.4.

An advantage of the formula (5.6) is that we can prove the nonvanishing property for the cusp form π‘“βˆ—π‘ for 𝑝>7.

Corollary 5.5. Assume that 𝑝≑3(mod4). If 𝑝>7, then π‘“βˆ—π‘ does not vanish identically.

Proof. We calculate the Fourier coefficient π‘Ž(𝑇;π‘“βˆ—π‘) at 𝑇=1001ξ€Έ. From the theorem, we have π‘ŽβŽ›βŽœβŽœβŽβŽ›βŽœβŽœβŽβŽžβŽŸβŽŸβŽ 1001;π‘“βˆ—π‘βŽžβŽŸβŽŸβŽ =π›Όβˆ—π‘(4)=π»βˆ—π‘(4)βˆ’π‘βˆ’16ξ€·πΊβˆ—π‘(4)+2πΊβˆ—π‘(3)+2πΊβˆ—π‘ξ€Έ.(0)(5.25) The assumption 𝑝≑3(mod4) implies that π»βˆ—π‘ξ€·(4)=βˆ’1βˆ’πœ’βˆ’4𝐡(𝑝)1,πœ’βˆ’4=1.(5.26) On the other hand, πΊβˆ—π‘(3)=πΊβˆ—π‘(4)=0 (because π‘βˆ€3,4) and πΊβˆ—π‘(0)=1/2. Hence, π‘βˆ’16ξ€·πΊβˆ—π‘(4)+2πΊβˆ—π‘(3)+2πΊβˆ—π‘ξ€Έ=(0)π‘βˆ’16.(5.27) Consequently, we obtain π‘ŽβŽ›βŽœβŽœβŽβŽ›βŽœβŽœβŽβŽžβŽŸβŽŸβŽ 1001;π‘“βˆ—π‘βŽžβŽŸβŽŸβŽ =π›Όβˆ—π‘(4)=1βˆ’π‘βˆ’16=7βˆ’π‘6<0(5.28) if 𝑝>7.

Remark 5.6. We have π‘“βˆ—3=π‘“βˆ—7=0. These identities are consistent with the fact that dim𝑆2(Ξ“20(3))=dim𝑆2(Ξ“20(7))=0 (see [7]).

6. Numerical Examples

In this section, we present numerical examples concerning our Siegel cusp forms. To begin with, we recall the theta series associated with quadratic forms.

Let 𝑆=𝑆(2π‘š) be a half-integral, positive-definite symmetric matrix of rank 2π‘š.

We associate the theta series ξ“πœ—(𝑆,𝑍)=π‘‹βˆˆπ‘€2π‘š,2(β„€)ξ€Ίξ€·exp2πœ‹π‘–tr𝑑𝑋𝑆𝑋𝑍,π‘βˆˆβ„2.(6.1) If we take a symmetric 𝑆=𝑆(2π‘š)>0 with level 𝑝, then πœ—(𝑆,𝑍)βˆˆπ‘€π‘šξ€·Ξ“20ξ€Έ.(𝑝)(6.2) In some cases, we can construct cusp forms by taking a linear combination of theta series.

The Case  𝑝=11. Set 𝑄1(11)=βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ110201010212010302⎞⎟⎟⎟⎟⎟⎟⎟⎠03,𝑄2(11)=βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ1121212121102121042212⎞⎟⎟⎟⎟⎟⎟⎟⎠24,𝑄3(11)=βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ12121211202121021212⎞⎟⎟⎟⎟⎟⎟⎟⎠12,(6.3) and πœ—π‘–=πœ—(𝑄𝑖(11),𝑍). It is known that dim𝑆2(Ξ“20(11))=1 (cf. [7]). We can take a nonzero element of 𝑆2(Ξ“20(11)) as 𝐢2(11)=3πœ—1βˆ’2πœ—2βˆ’πœ—3(6.4) (Yoshida’s cusp form cf. [8]).

Table 1 gives a first few examples for the Fourier coefficient of π‘“βˆ—11 and 𝐢2(11).

The relation between π‘“βˆ—11 and 𝐢2(11) is π‘“βˆ—111=βˆ’πΆ362(11).(6.5) Further examples of the Fourier coefficients of π‘“βˆ—11 can be obtained from Table 2.