Research Article

Some New Classes of Generalized Apostol-Euler and Apostol-Genocchi Polynomials

Table 1

𝑥 𝑛 expressed in terms of sums of special polynomials or numbers.

No. Special polynomials or numbers Series representation for 𝑥 𝑛

(1) Hermite polynomials [27, page 194, (4)] 𝑥 𝑛 = 𝑛 ! 2 𝑛 [ 𝑛 / 2 ] 𝑘 = 0 𝐻 𝑛 2 𝑘 ( 𝑥 ) 𝑘 ! ( 𝑛 2 𝑘 ) !
(2) Legendre polynomials [27, page 181, Theorem 65] 𝑥 𝑛 = 𝑛 ! 2 𝑛 [ 𝑛 / 2 ] 𝑘 = 0 ( 2 𝑛 4 𝑘 + 1 ) 𝑃 𝑛 2 𝑘 ( 𝑥 ) 𝑘 ! ( 3 / 2 ) 𝑛 𝑘
(3) Generalized Laguerre polynomials [27, page 207, (2)] 𝑥 𝑛 = 𝑛 ! ( 1 + 𝛼 ) 𝑛 𝑛 𝑘 = 0 ( 1 ) 𝑘 𝐿 𝑘 ( 𝛼 ) ( 𝑥 ) ( 1 + 𝛼 ) 𝑘 ( 𝑛 𝑘 ) !
(4) Gegenbauer polynomials [27, page 283, (36)] 𝑥 𝑛 = 𝑛 ! 2 𝑛 [ 𝑛 / 2 ] 𝑘 = 0 ( 𝜈 + 𝑛 2 𝑘 ) 𝐶 𝜈 𝑛 2 𝑘 ( 𝑥 ) 𝑘 ! ( 𝜈 ) 𝑛 + 1 𝑘
(5) Stirling numbers of the second kind [5, page 207, Theorem B ] 𝑥 𝑛 = 𝑛 𝑘 = 0 𝑥 𝑘 𝑘 ! 𝑆 ( 𝑛 , 𝑘 )
(6) Bernoulli polynomials [7, page 26] 𝑥 𝑛 = 1 𝑛 + 1 𝑛 𝑘 = 0 𝑘 𝐵 𝑛 + 1 𝑘 ( 𝑥 )
(7) Euler polynomials [7, page 30] 𝑥 𝑛 = 1 2 𝐸 𝑛 ( 𝑥 ) + 𝑛 𝑘 = 0 𝑛 𝑘 𝐸 𝑘 ( 𝑥 )
(8) Apostol-Bernoulli polynomials [8, page 634, (29)] 𝑥 𝑛 = 1 𝜆 𝑛 + 1 𝑛 + 1 𝑘 = 0 𝑘 𝔅 𝑛 + 1 𝑘 ( 𝑥 ; 𝜆 ) 𝔅 𝑛 + 1 ( 𝑥 ; 𝜆 )
(9) Apostol-Euler polynomials [8, page 635, (32)] 𝑥 𝑛 = 1 2 𝜆 𝑛 𝑘 = 0 𝑛 𝑘 𝔈 𝑘 ( 𝑥 ; 𝜆 ) + 𝔈 𝑛 ( 𝑥 ; 𝜆 )
(10) Generalized Apostol-Euler polynomials [28, page 1325, (2.4)] 𝑥 𝑛 = 1 2 𝛽 𝑘 = 0 𝛽 𝑘 𝜆 𝑘 𝔈 𝑛 ( 𝛽 ) ( 𝑥 + 𝑘 ; 𝜆 ) , 𝛽
(11) Generalized Bernoulli polynomials and Stirling numbers [28, page 1329, (2.16)] 𝑥 𝑛 = 𝑛 𝑙 = 0 𝑛 𝑙 𝑗 𝑙 + 𝑗 1 𝑆 ( 𝑙 + 𝑗 , 𝑗 ) 𝐵 ( 𝑗 ) 𝑛 𝑙 ( 𝑥 ) , 𝑗 0
(12) Generalized Apostol-Bernoulli polynomials and generalized Stirling numbers [28, page 1329, (2.15)] 𝑥 𝑛 = 𝑛 ! 𝑛 𝑙 = 𝑗 𝑗 ! ( 𝑙 + 𝑗 ) ! ( 𝑛 𝑙 ) ! 𝑆 ( 𝑙 + 𝑗 , 𝑗 ; 𝜆 ) 𝔅 ( 𝑗 ) 𝑛 𝑙 ( 𝑥 ; 𝜆 ) , 𝑗 0
(13) Generalized Bernoulli polynomials [29, page 158, (2.6)] 𝑥 𝑛 = 𝑛 𝑘 = 0 𝑛 𝑘 𝑘 ! 𝐵 ( 𝑘 + 𝑚 ) ! [ 𝑚 1 ] 𝑛 𝑘 ( 𝑥 ) , 𝑚