Abstract

Let 𝑉𝑛={𝑝(𝑥)[𝑥]|deg𝑝(𝑥)𝑛} be the (𝑛+1)-dimensional vector space over . We show that {𝐸0(𝑥),𝐸1(𝑥),,𝐸𝑛(𝑥)} is a good basis for the space 𝑉𝑛, for our purpose of arithmetical and combinatorial applications. Thus, if 𝑝(𝑥)[𝑥] is of degree 𝑛, then 𝑝(𝑥)=𝑛𝑙=0𝑏𝑙𝐸𝑙(𝑥) for some uniquely determined 𝑏𝑙. In this paper we develop method for computing 𝑏𝑙 from the information of 𝑝(𝑥).

1. Introduction

The Euler polynomials, 𝐸𝑛(𝑥), are given by 2𝑒𝑡𝑒+1𝑥𝑡=𝑒𝐸(𝑥)𝑡=𝑛=0𝐸𝑛(𝑡𝑥)𝑛,𝑛!(1.1)(see [120]) with the usual convention about replacing 𝐸𝑛(𝑥) by 𝐸𝑛(𝑥). In the special case, 𝑥=0,𝐸𝑛(0)=𝐸𝑛 are called the 𝑛th Euler numbers. The Bernoulli numbers are also defined by 𝑡𝑒𝑡1=𝑒𝐵𝑡=𝑛=0𝐵𝑛𝑡𝑛,𝑛!(1.2) (see [120]) with the usual convention about replacing 𝐵𝑛 by 𝐵𝑛. As is well known, the Bernoulli polynomials are given by 𝐵𝑛(𝑥)=𝑛𝑙=0𝑛𝑙𝐵𝑙𝑥𝑛𝑙=𝑛𝑙=0𝑛𝑙𝐵𝑛𝑙𝑥𝑙,(1.3) (see [915]) From (1.1), (1.2), and (1.3), we note that 𝐵𝑛(1)𝐵𝑛=𝛿1,𝑛,𝐸𝑛(1)+𝐸𝑛=2𝛿0,𝑛,(1.4) where 𝛿𝑘,𝑛 is the kronecker symbol.

Let 𝑚,𝑛+ with 𝑚+𝑛2. The formula 𝐵𝑚(𝑥)𝐵𝑛(𝑥)=𝑟𝑚𝑛𝑚𝐵2𝑟𝑛+2𝑟2𝑟𝐵𝑚+𝑛2𝑟(𝑥)𝑚+𝑛2𝑟+(1)𝑚+1𝑚!𝑛!𝐵𝑚+𝑛(𝑚+𝑛)!,(1.5) is proved in [46]. Let 𝑉𝑛={𝑝(𝑥)[𝑥]deg𝑝(𝑥)𝑛} be the (𝑛+1)-dimensional vector space over . Probably, {1,𝑥,,𝑥𝑛} is the most natural basis for this space. But {𝐸0(𝑥),𝐸1(𝑥),,𝐸𝑛(𝑥)} is also a good basis for the space 𝑉𝑛, for our purpose of arithmetical and combinatorial applications. Thus, if 𝑝(𝑥)[𝑥] is of degree 𝑛, then 𝑝(𝑥)=𝑛𝑙=0𝑏𝑙𝐸𝑙(𝑥),(1.6) for some uniquely determined 𝑏𝑙. Further, 𝑏𝑘=1𝑝2𝑘!(𝑘)(1)+𝑝(𝑘)(0)(𝑘=0,1,2,,𝑛),(1.7) where 𝑝(𝑘)(𝑥)=𝑑𝑘𝑝(𝑥)/𝑑𝑥𝑘. In this paper we develop methods for computing 𝑏𝑙 from the information of 𝑝(𝑥). Apply these results to arithmetically and combinatorially interesting identities involving 𝐸0(𝑥),𝐸1(𝑥),,𝐸𝑛(𝑥),𝐵0(𝑥),,𝐵𝑛(𝑥). Finally, we give some applications of those obtained identities.

2. Euler Basis, Identities, and Their Applications

Let us take 𝑝(𝑥) the polynomial of degree 𝑛 as follows: 𝑝(𝑥)=𝑛𝑘=0𝐵𝑘(𝑥)𝐵𝑛𝑘(𝑥).(2.1) From (2.1), we have 𝑝(𝑘)(𝑥)=(𝑛+1)!(𝑛𝑘+1)!𝑛𝑙=𝑘𝐵𝑙𝑘(𝑥)𝐵𝑛𝑙(𝑥).(2.2) By (1.7) and (2.2), we get 𝑏𝑘=1𝑝2𝑘!(𝑘)(1)+𝑝(𝑘)=1(0)2𝑘𝑛+1𝑛𝑙=𝑘𝐵𝑙𝑘+𝛿1,𝑙𝑘𝐵𝑛𝑙+𝛿1,𝑛𝑙+𝐵𝑙𝑘𝐵𝑛𝑙,(2.3) Thus, we have 𝑏𝑘=𝑘𝑛+1𝑛𝑙=𝑘𝐵𝑙𝑘𝐵𝑛𝑙+𝐵𝑛𝑘1𝑏,(0𝑘𝑛3),(2.4)𝑛2=7𝑛𝑛7221,𝑏𝑛=𝑛+1,𝑏𝑛1=0.(2.5) By (1.6), (2.1), (2.3), and (2.4), we get 𝑛𝑘=0𝐵𝑘(𝑥)𝐵𝑛𝑘=(𝑥)𝑛3𝑘=0𝑘𝑛+1𝑛𝑙=𝑘𝐵𝑙𝑘𝐵𝑛𝑙+𝐵𝑛𝑘1𝐸𝑘7(𝑥)+𝑛𝑛722𝐸1𝑛2(𝑥)+(𝑛+1)𝐸𝑛(𝑥).(2.6) Let us consider the following triple identities: 𝑝(𝑥)=𝑟+𝑠+𝑡=𝑛𝐵𝑟(𝑥)𝐵𝑠(𝑥)𝐵𝑡(𝑥)=𝑛𝑘=0𝑏𝑘𝐸𝑘(𝑥),(2.7) where the sum runs over all 𝑟,𝑠,𝑡+ with 𝑟+𝑠+𝑡=𝑛. Thus, by (2.7), we get 𝑝(𝑘)(𝑥)=(𝑛+2)(𝑛+1)𝑛(𝑛1)(𝑛𝑘+3)𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟(𝑥)𝐵𝑠(𝑥)𝐵𝑡(𝑥).(2.8) From (1.7) and (2.8), we have 𝑏𝑘=1𝑝2𝑘!(𝑘)(1)+𝑝(𝑘)=(0)𝑘𝑛+22𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟(1)𝐵𝑠(1)𝐵𝑡(1)+𝐵𝑟𝐵𝑠𝐵𝑡=𝑘𝑛+222𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝐵𝑠𝐵𝑡+𝑟+𝑠+𝑡=𝑛𝑘𝛿1,𝑟𝐵𝑠𝐵𝑡+𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝛿1,𝑠𝐵𝑡+𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝐵𝑠𝛿1,𝑡+𝑟+𝑠+𝑡=𝑛𝑘𝛿1,𝑟𝛿1,𝑠𝐵𝑡+𝑟+𝑠+𝑡=𝑛𝑘𝛿1,𝑟𝐵𝑠𝛿1,𝑡+𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝛿1,𝑠𝛿1,𝑡+𝑟+𝑠+𝑡=𝑛𝑘𝛿1,𝑟𝛿1,𝑠𝛿1,𝑡.(2.9) Therefore, by (2.7) and (2.9), we obtain the following theorem.

Theorem 2.1. For 𝑟,𝑠,𝑡+, and 𝑛 with 𝑛3, one has 𝑟+𝑠+𝑡=𝑛𝐵𝑟(𝑥)𝐵𝑠(𝑥)𝐵𝑡(=1𝑥)2𝑛2𝑘=0𝑘2𝑛+2𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝐵𝑠𝐵𝑡+3𝑟+𝑠=𝑛𝑘1𝐵𝑟𝐵𝑠+3𝐵𝑛𝑘2+𝛿𝑘,𝑛3𝐸𝑘+2𝐸(𝑥)𝑛+2𝑛(𝑥).(2.10)

Let us take the polynomial 𝑝(𝑥) as follows: 𝑝(𝑥)=𝑟+𝑠+𝑡=𝑛𝐵𝑟(𝑥)𝐵𝑠(𝑥)𝐸𝑡(𝑥).(2.11) Then, by (2.11), we get 𝑝(𝑘)(𝑥)=(𝑛+2)(𝑛+1)𝑛(𝑛1)(𝑛𝑘+3)𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟(𝑥)𝐵𝑠(𝑥)𝐸𝑡(𝑥).(2.12)

From (1.6), (1.7), and (2.12), we have 𝑏𝑘=1𝑝2𝑘!(𝑘)(1)+𝑝(𝑘)=(0)𝑘𝑛+22𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟(1)𝐵𝑠(1)𝐸𝑡(1)+𝐵𝑟𝐵𝑠𝐸𝑡=𝑘𝑛+22𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟+𝛿1,𝑟𝐵𝑠+𝛿1,𝑠𝐸𝑡+2𝛿0,𝑡+𝐵𝑟𝐵𝑠𝐸𝑡=𝑘𝑛+22𝑟+𝑠+𝑡=𝑛𝑘𝛿1,𝑟𝐵𝑠𝐸𝑡𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝛿1,𝑠𝐸𝑡+2𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝐵𝑠𝛿0,𝑡𝑟+𝑠+𝑡=𝑛𝑘𝛿1,𝑟𝛿1,𝑠𝐸𝑡+2𝑟+𝑠+𝑡=𝑛𝑘𝛿1,𝑟𝐵𝑠𝛿0,𝑡+2𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝛿1,𝑠𝛿0,𝑡+2𝑟+𝑠+𝑡=𝑛𝑘𝛿1,𝑟𝛿1,𝑠𝛿0,𝑡.(2.13) Note that 𝑏𝑛1=𝑛+2𝑛1𝑠+𝑡=0𝐵𝑠𝐸𝑡𝑟+𝑡=0𝐵𝑟𝐸𝑡+2𝑟+𝑠=1𝐵𝑟𝐵𝑠0+2𝐵0+2𝐵0=1+202𝐵𝑛+2𝑛111+21+𝐵1+2+2=0.(2.14) Therefore, we obtain the following theorem.

Theorem 2.2. For 𝑛 with 𝑛2, one has 𝑟+𝑠+𝑡=𝑛𝐵𝑟(𝑥)𝐵𝑠(𝑥)𝐸𝑡(=1𝑥)2𝑛2𝑘=0𝑘2𝑛+2𝑟+𝑠=𝑛𝑘𝐵𝑟𝐵𝑠2𝑟+𝑡=𝑛𝑘1𝐵𝑟𝐸𝑡𝐸𝑛𝑘2+4𝐵𝑛𝑘1+2𝛿𝑘,𝑛2𝐸𝑘+2𝐸(𝑥)𝑛+2𝑛(𝑥).(2.15)

Remark 2.3. By the same method, we obtain the following identities.
(I) 𝑟+𝑠+𝑡=𝑛𝐵𝑟(𝑥)𝐸𝑠(𝑥)𝐸𝑡(=1𝑥)2𝑛2𝑘=0𝑘2𝑛+2𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝐸𝑠𝐸𝑡+𝑠+𝑡=𝑛𝑘1𝐸𝑠𝐸𝑡4𝑟+𝑠=𝑛𝑘𝐵𝑟𝐸𝑠+4𝐵𝑛𝑘4𝐸𝑛𝑘1𝐸𝑘+2𝐸(𝑥)𝑛+2𝑛(𝑥).(2.16)
(II) 𝑟+𝑠+𝑡=𝑛𝐸𝑟(𝑥)𝐸𝑠(𝑥)𝐸𝑡(𝑥)=3𝑛2𝑘=0𝑘𝑛+2𝑟+𝑠=n𝑘𝐸𝑟𝐸𝑠2𝐸𝑛𝑘𝐸𝑘2𝐸(𝑥)+𝑛+2𝑛(𝑥).(2.17) Let us consider the polynomial 𝑝(𝑥) as follows: 𝑝(𝑥)=𝑟+𝑠+𝑡=𝑛𝐵𝑟(𝑥)𝐵𝑠(𝑥)𝑥𝑡.(2.18) Thus, by (2.18), we get 𝑝(𝑘)(𝑥)=(𝑛+2)(𝑛+1)𝑛(𝑛1)(𝑛𝑘+3)𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟(𝑥)𝐵𝑠(𝑥)𝑥𝑡.(2.19) From (1.6), (1.7), (2.18), and (2.19), we have 𝑏𝑘=1𝑝2𝑘!(𝑘)(1)+𝑝(𝑘)=(0)𝑘𝑛+22𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟(1)𝐵𝑠(1)+𝐵𝑟𝐵𝑠0𝑡=𝑘𝑛+22𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟+𝛿1,𝑟𝐵𝑠+𝛿1,𝑠+𝐵𝑟𝐵𝑠0𝑡=𝑘𝑛+22𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝐵𝑠+𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝛿1,𝑠+𝑟+𝑠+𝑡=𝑛𝑘𝛿1,𝑟𝐵𝑠+𝑟+𝑠+𝑡=𝑛𝑘𝛿1,𝑟𝛿1,𝑠+𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝐵𝑠0𝑡.(2.20) Here we note that 𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝐵𝑠=𝑛𝑘𝑡=0𝑟+𝑠=𝑛𝑘𝑡𝐵𝑟𝐵𝑠=𝑛𝑘𝑡=0𝑟+𝑠=𝑡𝐵𝑟𝐵𝑠𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝛿1,𝑠=𝑛𝑘1𝑟=0𝐵𝑟,if𝑘𝑛1,0,if𝑘=𝑛,𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑠𝛿1,𝑟=𝑛𝑘1𝑟=0𝐵𝑟,if𝑘𝑛1,0,if𝑘=𝑛,𝑟+𝑠+𝑡=𝑛𝑘𝛿1,𝑟𝛿1,𝑠=1,if𝑘𝑛2,0,if𝑘=𝑛1or𝑛,𝑟+𝑠+𝑡=𝑛𝑘𝐵𝑟𝐵𝑠0𝑡=𝑟+𝑠=𝑛𝑘𝐵𝑟𝐵𝑠,𝑘.(2.21) It is easy to show that 𝑏𝑛1=12𝑛+2𝑛1𝑟+𝑠=0𝐵𝑟𝐵𝑠+2𝑟+𝑠=1𝐵𝑟𝐵𝑠+2𝐵0=12𝐵𝑛+2𝑛11+21+𝐵2=1+22.𝑛+2𝑛1(2.22) Therefore, by (1.6), (2.18), (2.20), and (2.22), we obtain the following theorem.

Theorem 2.4. For 𝑛 with 𝑛2, one has 𝑟+𝑠+𝑡=𝑛𝐵𝑟(𝑥)𝐵𝑠(𝑥)𝑥𝑡=12𝑛2𝑘=0𝑘𝑛+2𝑛𝑘1𝑡=0𝑟+𝑠=𝑡𝐵𝑟𝐵𝑠+2𝑟+𝑠=𝑛𝑘𝐵𝑟𝐵𝑠+2𝑛𝑘1𝑟=0𝐵𝑟𝐸+1𝑘+1(𝑥)2𝐸𝑛+2𝑛1𝑛1𝑛𝐸(𝑥)+𝑛+2𝑛(𝑥).(2.23)

Remark 2.5. By the same method, we can derive the following identities.
(I) 𝑟+𝑠+𝑡=𝑛𝐵𝑟(𝑥)𝐸𝑠(𝑥)𝑥𝑡=12𝑛2𝑘=0𝑘𝑛+2𝑛𝑘1𝑡=0𝑟+𝑠=𝑡𝐵𝑟𝐸𝑠𝑛𝑘1𝑠=0𝐸𝑠+2𝑛𝑘𝑟=0𝐵𝑟𝐸+2𝑘+1(𝑥)2𝐸𝑛+2𝑛1𝑛1𝑛𝐸(𝑥)+𝑛+2𝑛(𝑥).(2.24)
(II) 𝑟+𝑠+𝑡=𝑛𝐸𝑟(𝑥)𝐸𝑠(𝑥)𝑥𝑡=12𝑛2𝑘=0𝑘𝑛+2𝑛𝑘1𝑡=0𝑟+𝑠=𝑡𝐸𝑟𝐸𝑠+2𝑟+𝑠=𝑛𝑘𝐸𝑟𝐸𝑠4𝑛𝑘𝑟=0𝐸𝑟𝐸+4𝑘+1(𝑥)2𝐸𝑛+2𝑛1𝑛12𝐸(𝑥)+𝑛+2𝑛(𝑥).(2.25)

Now we generalize the above consideration to the completely arbitrary case. Let 𝑝(𝑥)=𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝐵𝑖1(𝑥)𝐵𝑖𝑟(𝑥)𝐸𝑗1(𝑥)𝐸𝑗𝑠(𝑥),(2.26) where the sum runs over all nonnegative integers 𝑖1,𝑖2,,𝑖𝑟,𝑗1,,𝑗𝑠 satisfying 𝑖1+𝑖2++𝑖𝑟+𝑗1++𝑗𝑠=𝑛. From (2.26), we note that 𝑝(𝑘)(𝑥)=(𝑛+𝑟+𝑠1)(𝑛+𝑟+𝑠𝑘)𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝑘𝐵𝑖1(𝑥)𝐵𝑖𝑟(𝑥)×𝐸𝑗1(𝑥)𝐸𝑗𝑠(𝑥).(2.27)

By (1.6), (1.7), (2.18), and (2.27), we get 𝑏𝑘=1𝑝2𝑘!(𝑘)(1)+𝑝(𝑘)=1(0)2𝑘𝑛+𝑟+𝑠1𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝑘𝐵𝑖1(1)𝐵𝑖𝑟(1)𝐸𝑗1(1)𝐸𝑗𝑠(1)+𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠=12𝑘×𝑛+𝑟+𝑠1𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝑘𝐵𝑖1+𝛿1,𝑖1𝐵𝑖𝑟+𝛿1,𝑖𝑟×𝐸𝑗1+2𝛿0,𝑗1𝐸j𝑠+2𝛿0,𝑗𝑠+𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠=12𝑘𝑛+𝑟+𝑠10𝑎𝑟0𝑐𝑠𝑎𝑘+𝑟𝑛𝑟𝑎𝑠𝑐(1)𝑐2𝑠𝑐×𝑖1++𝑖𝑎+𝑗1++𝑗𝑐=𝑛+𝑎𝑘𝑟𝐵𝑖1𝐵𝑖𝑎𝐸𝑗1𝐸𝑗𝑐+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝑘𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠.(2.28) Note that 𝑏𝑛=12𝑛𝑛+𝑟+𝑠10𝑐𝑠𝑠𝑐(1)𝑐2𝑠𝑐×𝑖1++𝑖𝑟+𝑗1++𝑗𝑐=0𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑐+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=0𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠=12𝑛𝑛+𝑟+𝑠1((21)𝑠𝑛,𝑏+1)=𝑛+𝑟+𝑠1𝑛1=12𝑛+𝑟+𝑠1𝑛1𝑟1𝑎𝑟0𝑐𝑠𝑟𝑎𝑠𝑐(1)𝑐2𝑠𝑐×𝑖1++𝑖𝑎+𝑗1++𝑗𝑐=1+𝑎𝑟𝐵𝑖1𝐵𝑖𝑎𝐸𝑗1𝐸𝑗𝑐+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=1𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠=12𝑛+𝑟+𝑠1𝑛1𝑟(21)𝑠+0𝑐𝑠𝑠𝑐(1)𝑐2𝑠𝑐121(𝑟+𝑐)2=1(𝑟+𝑠)21𝑛+𝑟+𝑠1𝑛1𝑟21𝑟+21𝑠21𝑟2𝑠=0.(2.29) Therefore, by (1.6), (2.28), and (2.29), we obtain the following theorem.

Theorem 2.6. For 𝑛 with 𝑛2, one has 𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝐵𝑖1(𝑥)𝐵𝑖𝑟(𝑥)𝐸𝑗1(𝑥)𝐸𝑗𝑠(=1𝑥)2𝑛2𝑘=0𝑘𝑛+𝑟+𝑠10𝑎𝑟0𝑐𝑠𝑎𝑘+𝑟𝑛𝑟𝑎𝑠𝑐(1)𝑐2𝑠𝑐×𝑖1++𝑖𝑎+𝑗1++𝑗𝑐=𝑛+𝑎𝑘𝑟𝐵𝑖1𝐵𝑖𝑎𝐸𝑗1𝐸𝑗𝑐+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝑘𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠𝐸𝑘+𝑛𝐸(𝑥)𝑛+𝑟+𝑠1𝑛(𝑥).(2.30)

Let us consider the polynomial 𝑝(𝑥) of degree 𝑛 as 𝑝(𝑥)=𝑡+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝐵𝑖1(𝑥)𝐵𝑖𝑟(𝑥)𝐸𝑗1(𝑥)𝐸𝑗𝑠(𝑥)𝑥𝑡.(2.31) Then, from (2.31), we have 𝑝(𝑘)×(𝑥)=(𝑛+𝑟+𝑠)(𝑛+𝑟+𝑠1)(𝑛+𝑟+𝑠𝑘+1)𝑖1++𝑖𝑟+𝑗1++𝑗𝑠+𝑡=𝑛𝑘𝐵𝑖1(𝑥)𝐵𝑖𝑟(𝑥)𝐸𝑗1(𝑥)𝐸𝑗𝑠(𝑥)𝑥𝑡.(2.32) By (1.7) and (2.32), we get 𝑏𝑘=1𝑝2𝑘!(𝑘)(1)+𝑝(𝑘)=1(0)2𝑘𝑛+𝑟+𝑠𝑖1++𝑖𝑟+𝑗1++𝑗𝑠+𝑡=𝑛𝑘𝐵𝑖1(1)𝐵𝑖𝑟(1)𝐸𝑗1(1)𝐸𝑗𝑠(1)+𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠0𝑡=12𝑘×𝑛+𝑟+𝑠𝑖1++𝑖𝑟+𝑗1++𝑗𝑠+𝑡=𝑛𝑘𝐵𝑖1+𝛿1,𝑖1𝐵𝑖𝑟+𝛿1,𝑖𝑟×𝐸𝑗0+2𝛿0,𝑗1𝐸𝑗𝑠+2𝛿1,𝑗𝑠+𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠0𝑡(2.33) From (2.33), we can derive the following equation: 𝑏𝑘=12𝑘𝑛+𝑟+𝑠0𝑎𝑟0𝑐𝑠𝑎𝑘+𝑟𝑛𝑟𝑎𝑠𝑐(1)𝑐2𝑠𝑐×𝑛+𝑎𝑘𝑟𝑡=0𝑖1++𝑖𝑎+𝑗1++𝑗𝑐=𝑡𝐵𝑖1𝐵𝑖𝑎𝐸𝑗1𝐸𝑗𝑐+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝑘𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠.(2.34) Observe now that 𝑏𝑛=12𝑛𝑛+𝑟+𝑠𝑠𝑐=0𝑠𝑐(1)𝑐2𝑠𝑐×𝑖1++𝑖𝑟+𝑗1++𝑗𝑐=0𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑐+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=0𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠=12𝑛𝑛+𝑟+𝑠(21)𝑠=𝑛,𝑏+1𝑛+𝑟+𝑠(2.35)𝑛1=12𝑛+𝑟+𝑠𝑛1𝑟1𝑎𝑟0𝑐𝑠𝑟𝑎𝑠𝑐(1)𝑐2𝑠𝑐×1+𝑎𝑟𝑡=0𝑖1++𝑖𝑎+𝑗1++𝑗𝑐=𝑡𝐵𝑖1𝐵𝑖𝑎𝐸𝑗1𝐸𝑗𝑐+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=1𝐵𝑖1𝐵i𝑟𝐸𝑗1𝐸𝑗𝑠=121𝑛+𝑟+𝑠𝑛1𝑟+121𝑟+21𝑠21𝑟2𝑠=12.𝑛+𝑟+𝑠𝑛1(2.36) Therefore, by (1.6), (2.31), (2.34), (2.35), and (2.36), we obtain the following theorem.

Theorem 2.7. For 𝑛 with 𝑛2, one has 𝑖1++𝑖𝑟+𝑗1++𝑗𝑠+𝑡=𝑛𝐵𝑖1(𝑥)𝐵𝑖𝑟(𝑥)𝐸𝑗1(𝑥)𝐸𝑗𝑠(𝑥)𝑥𝑡=12𝑛2𝑘=0𝑘𝑛+𝑟+𝑠0𝑎𝑟0𝑐𝑠𝑎𝑘+𝑟𝑛𝑟𝑎𝑠𝑐(1)𝑐2𝑠𝑐×𝑛+𝑎𝑘𝑟𝑡=0𝑖1++𝑖𝑎+𝑗1++𝑗𝑐=t𝐵𝑖1𝐵𝑖𝑎𝐸𝑗1𝐸𝑗𝑐+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝑘𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠𝐸𝑘+1(𝑥)2𝐸𝑛+𝑟+𝑠𝑛1𝑛1𝑛𝐸(𝑥)+𝑛+𝑟+𝑠𝑛(𝑥).(2.37)

Let us consider the following polynomial of degree 𝑛. 𝑝(𝑥)=𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛1𝑖1!𝑖𝑟!𝑗1!𝑗𝑠!𝐵𝑖1(𝑥)𝐵𝑖𝑟(𝑥)𝐸𝑗1(𝑥)𝐸𝑗𝑠(𝑥).(2.38) Thus, by (2.38), we get 𝑝(𝑘)(𝑥)=(𝑟+𝑠)𝑘𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝑘1𝑖1!𝑖𝑟!𝑗1!𝑗𝑠!×𝐵𝑖1(𝑥)𝐵𝑖𝑟(𝑥)𝐸𝑗1(𝑥)𝐸𝑗𝑠(𝑥).(2.39) From (1.7), we have 𝑏𝑘=1𝑝2𝑘!(𝑘)(1)+𝑝(𝑘)=(0)(𝑟+𝑠)𝑘2𝑘!𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝑘1𝑖1!𝑖𝑟!𝑗1!𝑗𝑠!×𝐵𝑖1(1)𝐵𝑖𝑟(1)×𝐸𝑗1(1)𝐸𝑗𝑠(1)+𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠=(𝑟+𝑠)𝑘2𝑘!𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝑘1𝑖1!𝑖𝑟!𝑗1!𝑗𝑠!×𝐵𝑖1+𝛿1,𝑖1𝐵𝑖𝑟+𝛿1,𝑖𝑟×𝐸𝑗1+2𝛿0,𝑗1𝐸𝑗𝑠+2𝛿0,𝑗𝑠+𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠.(2.40) Thus, by (2.40), we get 𝑏𝑘=(𝑟+𝑠)𝑘2𝑘!0𝑎𝑟0𝑐𝑠𝑎𝑘+𝑟𝑛𝑟𝑎𝑠𝑐(1)𝑐2s𝑐×𝑖1++𝑖𝑎+𝑗1++𝑗𝑐=𝑛+𝑎𝑘𝑟𝐵𝑖1𝐵𝑖𝑎𝐸𝑗1𝐸𝑗𝑐𝑖1!𝑖𝑎!𝑗1!𝑗𝑐!+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝑘𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠𝑖1!𝑖𝑟!𝑗1!𝑗𝑠!.(2.41) Now, we note that 𝑏𝑛=(𝑟+𝑠)𝑛2𝑛!𝑠𝑐=0s𝑐(1)𝑐2𝑠𝑐×𝑖1++𝑖𝑟+𝑗1++𝑗𝑐=0𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑐𝑖1!𝑖𝑟!𝑗1!𝑗𝑐!+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=0𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠𝑖1!𝑖𝑟!𝑗1!𝑗𝑠!=(𝑟+𝑠)𝑛2𝑛!(21)𝑠=+1(𝑟+𝑠)𝑛,𝑏𝑛!𝑛1=(𝑟+𝑠)𝑛12(𝑛1)!𝑟1𝑎𝑟0𝑐𝑠𝑟𝑎𝑠𝑐(1)𝑐2𝑠𝑐×𝑖1++𝑖𝑎+𝑗1++𝑗𝑐=1+𝑎𝑟𝐵𝑖1𝐵𝑖𝑎𝐸𝑗1𝐸𝑗𝑐𝑖1!𝑖𝑎!𝑗1!𝑗𝑐!+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=1𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠𝑖1!𝑖𝑟!𝑗1!𝑗𝑠!=(𝑟+𝑠)𝑛12(𝑛1)!𝑟(21)𝑠+𝑠𝑐=0𝑠𝑐(1)𝑐2𝑠𝑐121(𝑟+𝑐)2(𝑟+𝑠)=0.(2.42) Therefore, by (1.6), (2.38), (2.41), and (2.42), we obtain the following theorem.

Theorem 2.8. For 𝑛 with 𝑛2, one has 𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝐵𝑖1(𝑥)𝐵𝑖𝑟(𝑥)𝐸𝑗1(𝑥)𝐸𝑗𝑠(𝑥)𝑖1!𝑖𝑟!𝑗1!𝑗𝑠!=12𝑛2𝑘=0(𝑟+𝑠)𝑘𝑘!0𝑎𝑟0𝑐𝑠𝑎𝑘+𝑟𝑛𝑟𝑎𝑠𝑐(1)𝑐2𝑠𝑐×𝑖1++𝑖𝑎+𝑗1++𝑗𝑐=𝑛+𝑎𝑘𝑟𝐵𝑖1𝐵𝑖𝑎𝐸𝑗1𝐸𝑗𝑐𝑖1!𝑖𝑎!𝑗1!𝑗𝑐!+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝑘𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠𝑖1!𝑖𝑟!𝑗1!𝑗𝑠!𝐸𝑘+(𝑥)(𝑟+𝑠)𝑛𝐸𝑛!𝑛(𝑥).(2.43)

By the same method, we can obtain the following identity: 𝑖1++𝑖𝑟+𝑗1++𝑗𝑠+𝑡=𝑛𝐵𝑖1(𝑥)𝐵𝑖𝑟(𝑥)𝐸𝑗1(𝑥)𝐸𝑗𝑠(𝑥)𝑥𝑡𝑖1!𝑖𝑟!𝑗1!𝑗𝑠=1!𝑡!2𝑛2𝑘=0(𝑟+𝑠+1)𝑘𝑘!0𝑎𝑟0𝑐𝑠𝑎𝑘+𝑟𝑛𝑟𝑎𝑠𝑐(1)𝑐2𝑠𝑐×𝑛+𝑎𝑘𝑟𝑡=01(𝑛+𝑎𝑘𝑟𝑡)!𝑖1++𝑖𝑎+𝑗1++𝑗𝑐=𝑡𝐵𝑖1𝐵𝑖𝑎𝐸𝑗1𝐸𝑗𝑐𝑖1!𝑖𝑎!𝑗1!𝑗𝑐!+𝑖1++𝑖𝑟+𝑗1++𝑗𝑠=𝑛𝑘𝐵𝑖1𝐵𝑖𝑟𝐸𝑗1𝐸𝑗𝑠𝑖1!𝑖𝑟!𝑗1!𝑗𝑠!𝐸𝑘(+𝑥)(𝑟+𝑠+1)𝑛1𝐸2(𝑛1)!𝑛1(𝑥)+(𝑟+𝑠+1)𝑛𝐸𝑛!𝑛(𝑥).(2.44)

Acknowledgments

This paper was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology 2012R1A1A2003786.