About this Journal Submit a Manuscript Table of Contents
International Journal of Microwave Science and Technology
Volume 2011 (2011), Article ID 160129, 6 pages
http://dx.doi.org/10.1155/2011/160129
Research Article

The Effect of Bulk Density on Emission Behavior of Soil at Microwave Frequencies

Microwave Research Laboratory, Department of Physics, Raj Rishi Autonomous Government P.G. College, Alwar, Rajasthan 301001, India

Received 30 April 2011; Revised 18 October 2011; Accepted 1 December 2011

Academic Editor: Jean Pierre Wigneron

Copyright © 2011 V. K. Gupta and R. A. Jangid. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Malicki, R. Plagge, and C. H. Roth, “Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil,” European Journal of Soil Science, vol. 47, no. 3, pp. 357–366, 1996. View at Scopus
  2. C. H. Roth, M. A. Malicki, and R. Plagge, “Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR,” Journal of Soil Science, vol. 43, no. 1, pp. 1–13, 1992. View at Scopus
  3. M. C. Dobson, F. T. Ulaby, M. A. El-Rayes, and M. T. Hallikainen, “Microwave dielectric behavior of wet soil—part II: dielectric mixing models,” IEEE Transactions on Geoscience and Remote Sensing, vol. GE-23, no. 1, pp. 35–46, 1985. View at Scopus
  4. N. R. Peplinski, F. T. Ulaby, and M. C. Dobson, “Dielectric properties of soils in the 0.3–1.3-GHz range,” IEEE Transactions on Geoscience and Remote Sensing, vol. 33, no. 3, pp. 803–807, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. M. T. Hallikainen, F. T. Ulaby, M. C. Dobson, and M. A. El-Rayes, “Microwave dielectric behavior of wet soil—part I: empirical models and experimental observations,” IEEE Transactions on Geoscience and Remote Sensing, vol. GE-23, no. 1, pp. 25–34, 1985. View at Scopus
  6. P. Hoekstra and A. Delaney, “Dielectric properties of soils at UHF and microwave frequencies,” Journal of Geophysical Research, vol. 79, pp. 1699–1708, 1974.
  7. J. R. Wang and T. J. Schmugge, “An empirical model for the complex dielectric permittivity of soils as a function of water content,” IEEE Transactions on Geoscience and Remote Sensing, vol. GE-18, no. 4, pp. 288–295, 1980. View at Scopus
  8. J. P. Wigneron, J. C. Calvet, T. Pellarin, A. A. Van de Griend, M. Berger, and P. Ferrazzoli, “Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans,” Remote Sensing of Environment, vol. 85, no. 4, pp. 489–506, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Baghdadi, O. Cerdan, M. Zribi et al., “Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: application to hydrological and erosion modelling,” Hydrological Processes, vol. 22, no. 1, pp. 9–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Álvarez-Mozos, J. Casalí, M. González-Audícana, and N. E. C. Verhoest, “Assessment of the operational applicability of RADARSAT-1 data for surface soil moisture estimation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 4, pp. 913–923, 2006. View at Publisher · View at Google Scholar
  11. J. Behari, Microwave Dielectric Behaviour of Wet Soils, Anamaya Publishers, New-Delhi, India, 2005.
  12. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing Active and Passive, vol. 3, Artech House, Boston, Mass, USA, 1986.
  13. W. Peake, “Interaction of electromagnetic waves with some natural surfaces,” IRE Transactions on Antennas and Propagation, vol. 7, pp. 2582–2590, 1959.
  14. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, vol. 2, Addison-Wesley, Reading, Mass, USA, 1982.
  15. M. Nolan and D. R. Fatland, “Penetration depth as a DInSAR observable and proxy for soil moisture,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 3, pp. 532–537, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Schmugge, P. Gloersen, T. Wilheit, and F. Geiger, “Remote sensing of soil moisture with microwave radiometers,” Journal of Geophysical Research, vol. 19, no. 2, pp. 317–323, 1974. View at Scopus
  17. T. J. Schmugge, T. J. Jackson, A. D. Nicks, G. A. Coleman, and E. T. Engman, “Soil moisture updating and microwave remotesensing for hydrological simulation,” in Proceedings of the Symposium on Hydrological Forecasting, Oxford, UK, 1980.
  18. B. J. Choudhury, T. J. Schmugge, R. W. Newton, and A. Chang, “Effect of surface roughness on the microwave emission from soils,” Journal of Geophysical Research, vol. 84, no. 9, pp. 5699–5706, 1979. View at Scopus
  19. J. P. Wigneron, A. Chanzy, Y. H. Kerr et al., “Evaluating an improved parameterization of the soil emission in L-MEB,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 4, pp. 1177–1189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Saucher and J. Fox, Handbook of Microwave Measurements, vol. 2, John Wiley & Sons, New York, NY, USA, 503.
  21. O. P. N. Calla, S. Agarwal, S. K. Agarwalla, R. Bhattacharjee, and A. Kalita, “Comparative study of the methods of measurement of dielectric constant at microwave frequencies for dry and wet soil,” Indian Journal of Radio & Space Physics, vol. 32, no. 2, pp. 108–113, 2003. View at Scopus
  22. D. H. Gadani and A. D Vyas, “Measutment of complex dielectric constant of soil of Gujrat at X and C band microwave frequencies,” Indian Journal of Radio & Space Physics, vol. 37, pp. 221–229, 2008.
  23. A. Von Hippel, Dielectrics and Waves, Wiley, New York, NY, USA, 1954.
  24. P. Debye, Polar Molecules, Dover Publications, New York, NY, USA, 1929.
  25. L. A. Klein and C. T. Swift, “An improved model for the dielectric constant of sea water at microwave frequencies,” IEEE Transactions on Antennas and Propagation, vol. 25, no. 1, pp. 104–111, 1977. View at Scopus
  26. Stogryn A, “Equations for calculating the dielectric constant of saline water,” IEEE Transactions on Microwave Theory and Techniques, vol. 19, no. 8, pp. 733–736, 1971. View at Scopus
  27. J. A. Kong, Electromagnetic Wave Theory, Wiley-Interscience, New York, NY, USA, 2nd edition, 1990.
  28. O. P. N. Calla, A. Baruah, B. Das, K. P. Mishra, M. Kalita, and S. S. Haque, “Emission and scattering behaviour of dry soils from northeast India,” Indian Journal of Radio and Space Physics, vol. 33, no. 5, pp. 321–328, 2004. View at Scopus