About this Journal Submit a Manuscript Table of Contents
International Journal of Microwave Science and Technology
Volume 2012 (2012), Article ID 152726, 8 pages
http://dx.doi.org/10.1155/2012/152726
Research Article

Fracture Toughness of Vinyl Ester Composites Reinforced with Sawdust and Postcured in Microwaves

1Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, QLD 4350, Australia
2Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland Toowoomba, QLD 4350, Australia

Received 22 March 2012; Revised 25 May 2012; Accepted 29 May 2012

Academic Editor: Qing Quan Liang

Copyright © 2012 H. Ku et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Baker, “Development of the short rod method of fracture toughness measurement,” in Proceedings of the Conference on Wear and Fracture Prevention, pp. 163–180, ASM, Metals Park, Ohio, USA, May 1980.
  2. G. Pritchard, Ed., Reinforced Plastics Durability, Woodhead Publishing, UK, 1999.
  3. S. W. Davey, T. Heldt, G. Van Erp, and S. R. Ayers, “Vinylester/cenosphere composite materials for civil and structural engineering,” FRP International, vol. 2, no. 3, pp. 2–5, 2005.
  4. H. Ku, M. Prajapati, and F. Cardona, “Thermal properties of sawdust reinforced vinyl ester composites post-cured in microwaves: a pilot study,” Composites Part B, vol. 42, no. 4, pp. 898–906, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H. S. Ku, S. C. Fok, and E. Siores, “Contrasts on fracture toughness and flexural strength of varying percentages of SLG-reinforced phenolic composites,” Journal of Composite Materials, vol. 43, no. 8, pp. 885–895, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. W. D. Callister, Materials Science and Engineering: An Introduction, John Wiley and Sons, New York, NY, USA, 7th edition, 2006.
  7. H. Wang, Engineering Materials—Study Book 1, University of Southern Queensland, 2009.
  8. D. Munz, “Determination of fracture toughness of high strength aluminum alloys with chevron notched short rod and short bar specimens,” Engineering Fracture Mechanics, vol. 15, no. 1-2, pp. 231–236, 1981. View at Scopus
  9. L. M. Barker, Mechanics Applied to Brittle Materials, STP 678, ASTM, 1979.
  10. H. Ku, M. Trada, F. Cardona, D. Rogers, and W. Jacobsen, “Tensile tests of phenol formaldehyde SLG reinforced composites post-cured in microwaves: preliminary results,” Journal of Composite Materials, vol. 42, no. 26, pp. 2783–2795, 2008.
  11. E. Dreerman, M. Narkis, A. Siegmann, R. Joseph, H. Dodiuk, and A. T. Dibenedetto, “Mechanical behavior and structure of rubber modified vinyl ester resins,” Journal of Applied Polymer Science, vol. 72, no. 5, pp. 647–657, 1999. View at Scopus
  12. R. Hameed, A. Turatsinze, F. Duprat, and A. Sellier, “Metallic fiber reinforced concrete: effect of fiber aspect ratio on the flexural properties,” Journal of Engineering and Applied Sciences, vol. 4, no. 5, pp. 67–72, 2009. View at Scopus
  13. H. G. Kim, “Effects of fiber aspect ratio evaluated by elastic analysis in discontinuous composites,” Journal of Mechanical Science and Technology, vol. 22, no. 3, pp. 411–419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. G. Salemane and A. S. Luyt, “Thermal and mechanical properties of polypropylene-wood powder composites,” Journal of Applied Polymer Science, vol. 100, no. 5, pp. 4173–4180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Tang, “Fibre reinforced polymer composites applications in USA,” in Proceedings of the 1st Korea USA Road Workshop, FHWA, January 1997.
  16. K. Oksman and C. Clemons, “Mechanical properties and morphology of impact modified polypropylene-wood flour composites,” Journal of Applied Polymer Science, vol. 67, no. 9, pp. 1503–1513, 1998. View at Scopus
  17. K. L. Pickering, A. Abdalla, C. Ji, A. G. McDonald, and R. A. Franich, “The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites,” Composites Part A, vol. 34, no. 10, pp. 915–926, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Ray, D. Bhattacharya, A. K. Mohanty, L. T. Drzal, and M. Mishra, “Static and dynamic mechanical properties of vinylester resin matrix composites filled with fly ash,” Macromolecular Materials and Engineering, vol. 291, no. 7, pp. 784–792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Ku, M. Jamal-Eddine, and M. Trada, “Fracture toughness of calcium carbonate powder reinforced vinyl ester composites: pilot study,” Journal of Reinforced Plastics and Composites. In press.
  20. F. Cardona, D. Rogers, S. Davey, and G. Van Erp, “Investigation of the effect of styrene content on the ultimate curing of vinylester resins by TGA-FTIR,” Journal of Composite Materials, vol. 41, no. 2, pp. 137–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Cardona, H. Ku, N. Pattarachaiyakoop, D. Rogers, and M. Trada, “Fracture toughness of phenol formaldehyde composites post-cured in microwaves,” Journal of Electromagnetic Waves and Applications, vol. 21, no. 14, pp. 2137–2146, 2007. View at Publisher · View at Google Scholar · View at Scopus