About this Journal Submit a Manuscript Table of Contents
International Journal of Nephrology
Volume 2012 (2012), Article ID 760580, 15 pages
http://dx.doi.org/10.1155/2012/760580
Review Article

Developmental Programming of Hypertension and Kidney Disease

1Section of Neonatology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
2Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA

Received 12 July 2012; Revised 18 September 2012; Accepted 21 October 2012

Academic Editor: Umberto Simeoni

Copyright © 2012 Euming Chong and Ihor V. Yosypiv. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Mitsnefes, “Cardiovascular disease in children with chronic kidney disease,” Journal of the American Society of Nephrology, vol. 23, no. 4, pp. 578–585, 2012.
  2. E. M. Widdowson and R. A. McCance, “Some effects of accelerating growth—I. General somatic development,” Proceedings of the Royal Society of London. Series B, vol. 152, pp. 188–206, 1960. View at Scopus
  3. D. J. P. Barker, C. Osmond, J. Golding, D. Kuh, and M. E. J. Wadsworth, “Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease,” British Medical Journal, vol. 298, no. 6673, pp. 564–567, 1989. View at Scopus
  4. B. M. Brenner, D. L. Garcia, and S. Anderson, “Glomeruli and blood pressure. Less of one, more the other?” American Journal of Hypertension, vol. 1, no. 4, pp. 335–347, 1988. View at Scopus
  5. V. A. Luyckx and B. M. Brenner, “The clinical importance of nephron mass,” Journal of the American Society of Nephrology, vol. 21, no. 6, pp. 898–910, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. K. M. Moritz, M. Dodic, and E. M. Wintour, “Kidney development and the fetal programming of adult disease,” BioEssays, vol. 25, no. 3, pp. 212–220, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. F. Duncan, R. J. Heyne, J. S. Morgan, N. Ahmad, and C. R. Rosenfeld, “Elevated systolic blood pressure in preterm very-low-birth-weight infants ≤3 years of life,” Pediatric Nephrology, vol. 26, no. 7, pp. 1115–1121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. F. de Jong, M. C. Monuteaux, R. M. van Elburg, et al., “Systematic review and meta-analysis of preterm birth and later systolic blood pressure,” Hypertension, vol. 59, no. 2, pp. 226–234, 2012.
  9. S. L. White, V. Perkovic, A. Cass et al., “Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies,” American Journal of Kidney Diseases, vol. 54, no. 2, pp. 248–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Costantini and R. Kopan, “Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development,” Developmental Cell, vol. 18, no. 5, pp. 698–712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. W. E. Hoy, R. N. Douglas-Denton, M. D. Hughson, A. Cass, K. Johnson, and J. F. Bertram, “A stereological study of glomerular number and volume: preliminary findings in a multiracial study of kidneys at autopsy,” Kidney International, vol. 63, no. 83, supplement, pp. S31–S37, 2003. View at Scopus
  12. M. L. Sequeira Lopez and R. A. Gomez, “Development of the renal arterioles,” Journal of the American Society of Nephrology, vol. 22, no. 12, pp. 2156–2165, 2011.
  13. A. Schedl, “Renal abnormalities and their developmental origin,” Nature Reviews Genetics, vol. 8, no. 10, pp. 791–802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Gruenwald, “Infants of low birth weight among 5,000 deliveries,” Pediatrics, vol. 34, pp. 157–162, 1964. View at Scopus
  15. R. Manalich, L. Reyes, M. Herrera, C. Melendi, and I. Fundora, “Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study,” Kidney International, vol. 58, no. 2, pp. 770–773, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. C. C. Hoppe, R. G. Evans, K. M. Moritz et al., “Combined prenatal and postnatal protein restriction influences adult kidney structure, function, and arterial pressure,” American Journal of Physiology, vol. 292, no. 1, pp. R462–R469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. A. Ortiz, A. Quan, A. Weinberg, and M. Baum, “Effect of prenatal dexamethasone on rat renal development,” Kidney International, vol. 59, no. 5, pp. 1663–1669, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Drougia, V. Giapros, E. Hotoura, F. Papadopoulou, M. Argyropoulou, and S. Andronikou, “The effects of gestational age and growth restriction on compensatory kidney growth,” Nephrology Dialysis Transplantation, vol. 24, no. 1, pp. 142–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Hotoura, M. Argyropoulou, F. Papadopoulou et al., “Kidney development in the first year of life in small-for-gestational-age preterm infants,” Pediatric Radiology, vol. 35, no. 10, pp. 991–994, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. I. M. Schmidt, M. Chellakooty, K. A. Boisen et al., “Impaired kidney growth in low-birth-weight children: distinct effects of maturity and weight for gestational age,” Kidney International, vol. 68, no. 2, pp. 731–740, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Basioti, V. Giapros, A. Kostoula, V. Cholevas, and S. Andronikou, “Growth restriction at birth and kidney function during childhood,” American Journal of Kidney Diseases, vol. 54, no. 5, pp. 850–858, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Hinchliffe, M. R. J. Lynch, P. H. Sargent, C. V. Howard, and D. Van Velzen, “The effect of intrauterine growth retardation on the development of renal nephrons,” British Journal of Obstetrics and Gynaecology, vol. 99, no. 4, pp. 296–301, 1992. View at Scopus
  23. C. P. M. Leeson, M. Kattenhorn, R. Morley, A. Lucas, and J. E. Deanfield, “Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life,” Circulation, vol. 103, no. 9, pp. 1264–1268, 2001. View at Scopus
  24. J. Goodfellow, M. F. Bellamy, S. T. Gorman et al., “Endothelial function is impaired in fit young adults of low birth weight,” Cardiovascular Research, vol. 40, no. 3, pp. 600–606, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Fattal-Valevski, J. Bernheim, Y. Leitner, B. Redianu, H. Bassan, and S. Harel, “Blood pressure values in children with intrauterine growth retardation,” Israel Medical Association Journal, vol. 3, no. 11, pp. 805–808, 2001. View at Scopus
  26. S. P. Walker, P. Gaskin, C. A. Powell, F. I. Bennett, T. E. Forrester, and S. Grantham-McGregor, “The effects of birth weight and postnatal linear growth retardation on blood pressure at age 11-12 years,” Journal of Epidemiology and Community Health, vol. 55, no. 6, pp. 394–398, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Shankaran, A. Das, C. R. Bauer et al., “Fetal origin of childhood disease: intrauterine growth restriction in term infants and risk for hypertension at 6 years of age,” Archives of Pediatrics and Adolescent Medicine, vol. 160, no. 9, pp. 977–981, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. R. Järvelin, U. Sovio, V. King et al., “Early life factors and blood pressure at age 31 years in the 1966 Northern Finland birth cohort,” Hypertension, vol. 44, no. 6, pp. 838–846, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Mu, S. F. Wang, J. Sheng, et al., “Birth weight and subsequent blood pressure: a meta-analysis,” Archive of Cardiovascular Disease, vol. 105, no. 2, pp. 99–113, 2012.
  30. C. M. Law, M. De Swiet, C. Osmond et al., “Initiation of hypertension in utero and its amplification throughout life,” British Medical Journal, vol. 306, no. 6869, pp. 24–27, 1993. View at Scopus
  31. M. G. Keijzer-Veen, M. Schrevel, M. J. J. Finken et al., “Microalbuminuria and lower glomerular filtration rate at young adult age in subjects born very premature and after intrauterine growth retardation,” Journal of the American Society of Nephrology, vol. 16, no. 9, pp. 2762–2768, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. B. E. Vikse, L. M. Irgens, T. Leivestad, S. Hallan, and B. M. Iversen, “Low birth weight increases risk for end-stage renal disease,” Journal of the American Society of Nephrology, vol. 19, no. 1, pp. 151–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. B. Hodgin, M. Rasoulpour, G. S. Markowitz, and V. D. D'Agati, “Very low birth weight is a risk factor for secondary focal segmental glomerulosclerosis,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 1, pp. 71–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. B. M. Brenner and H. S. Mackenzie, “Nephron mass as a risk factor for progression of renal disease,” Kidney International, vol. 51, no. 63, supplement, pp. S124–S127, 1997. View at Scopus
  35. C. Stelloh, K. P. Allen, and D. L. Mattson, “Prematurity in mice leads to reduction in nephron number, hypertension, and proteinuria,” Translational Research, vol. 159, no. 2, pp. 80–89, 2012.
  36. H. Bassan, L. Leider Trejo, N. Kariv et al., “Experimental intrauterine growth retardation alters renal development,” Pediatric Nephrology, vol. 15, no. 3-4, pp. 192–195, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. V. M. Vehaskari, D. H. Aviles, and J. Manning, “Prenatal programming of adult hypertension in the rat,” Kidney International, vol. 59, no. 1, pp. 238–245, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. L. L. Woods, J. R. Ingelfinger, J. R. Nyengaard, and R. Rasch, “Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats,” Pediatric Research, vol. 49, no. 4, pp. 460–467, 2001. View at Scopus
  39. M. M. Rodríguez, A. H. Gómez, C. L. Abitbol, J. J. Chandar, S. Duara, and G. E. Zilleruelo, “Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants,” Pediatric and Developmental Pathology, vol. 7, no. 1, pp. 17–25, 2004. View at Scopus
  40. M. G. Keijzer-Veen, A. S. Devos, M. Meradji, F. W. Dekker, J. Nauta, and B. J. Van Der Heijden, “Reduced renal length and volume 20 years after very preterm birth,” Pediatric Nephrology, vol. 25, no. 3, pp. 499–507, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. R. Sutherland, L. Gubhaju, L. Moore et al., “Accelerated maturation and abnormal morphology in the preterm neonatal kidney,” Journal of the American Society of Nephrology, vol. 22, no. 7, pp. 1365–1374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Gubhaju, M. R. Sutherland, B. A. Yoder, A. Zulli, J. F. Bertram, and M. J. Black, “Is nephrogenesis affected by preterm birth? Studies in a non-human primate model,” American Journal of Physiology, vol. 297, no. 6, pp. F1668–F1677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. G. Keijzer-Veen, M. J. J. Finken, J. Nauta et al., “Is blood pressure increased 19 years after intrauterine growth restriction and preterm birth? A prospective follow-up study in the Netherlands,” Pediatrics, vol. 116, no. 3, pp. 725–731, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Singhal, M. Kattenhorn, T. J. Cole, J. Deanfield, and A. Lucas, “Preterm birth, vascular function, and risk factors for atherosclerosis,” Lancet, vol. 358, no. 9288, pp. 1159–1160, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. D. A. Leon, M. Johansson, and F. Rasmussen, “Gestational age and growth rate of fetal mass are inversely associated with systolic blood pressure in young adults: an epidemiologic study of 165,136 Swedish men aged 18 years,” American Journal of Epidemiology, vol. 152, no. 7, pp. 597–604, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Kistner, G. Celsi, M. Vanpée, and S. H. Jacobson, “Increased systolic daily ambulatory blood pressure in adult women born preterm,” Pediatric Nephrology, vol. 20, no. 2, pp. 232–233, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. F. Cheung, K. Y. Wong, C. C. Barbara, B. C. C. Lam, and N. S. Tsoi, “Relation of arterial stiffness with gestational age and birth weight,” Archives of Disease in Childhood, vol. 89, no. 3, pp. 217–221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Bacchetta, J. Harambat, L. Dubourg et al., “Both extrauterine and intrauterine growth restriction impair renal function in children born very preterm,” Kidney International, vol. 76, no. 4, pp. 445–452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. T. J. Mathews, A. M. Miniño, M. J. K. Osterman, D. M. Strobino, and B. Guyer, “Annual summary of vital statistics: 2008,” Pediatrics, vol. 127, no. 1, pp. 146–157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. F. B. Stapleton, D. P. Jones, and R. S. Green, “Acute renal failure in neonates: incidence, etiology and outcome,” Pediatric Nephrology, vol. 1, no. 3, pp. 314–320, 1987. View at Scopus
  51. M. F. Schreuder, R. R. Bueters, M. C. Huigen, F. G. M. Russel, R. Masereeuw, and L. P. Van Den Heuvel, “Effect of drugs on renal development,” Clinical Journal of the American Society of Nephrology, vol. 6, no. 1, pp. 212–217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. M. E. Wlodek, A. Mibus, A. Tan, A. L. Siebel, J. A. Owens, and K. M. Moritz, “Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat,” Journal of the American Society of Nephrology, vol. 18, no. 6, pp. 1688–1696, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. M. F. Schreuder, J. R. Nyengaard, F. Remmers, J. A. E. Van Wijk, and H. A. Delemarre-Van De Waal, “Postnatal food restriction in the rat as a model for a low nephron endowment,” American Journal of Physiology, vol. 291, no. 5, pp. F1104–F1107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Larsson, A. Aperia, and P. Wilton, “Effect of normal development on compensatory renal growth,” Kidney International, vol. 18, no. 1, pp. 29–35, 1980. View at Scopus
  55. S. J. M. Welham, P. R. Riley, A. Wade, M. Hubank, and A. S. Woolf, “Maternal diet programs embryonic kidney gene expression,” Physiological Genomics, vol. 22, pp. 48–56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Bertram, A. R. Trowern, N. Copin, A. A. Jackson, and C. B. Whorwood, “The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11β-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero,” Endocrinology, vol. 142, no. 7, pp. 2841–2853, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. R. A. Augustyniak, K. Singh, D. Zeldes, M. Singh, and N. F. Rossi, “Maternal protein restriction leads to hyperresponsiveness to stress and salt-sensitive hypertension in male offspring,” American Journal of Physiology, vol. 298, no. 5, pp. R1375–R1382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. L. Tain, C. S. Hsieh, I. C. Lin, C. C. Chen, J. M. Sheen, and L. T. Huang, “Effects of maternal l-citrulline supplementation on renal function and blood pressure in offspring exposed to maternal caloric restriction: the impact of nitric oxide pathway,” Nitric Oxide, vol. 23, no. 1, pp. 34–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Bakker and V. W. Jaddoe, “Cardiovascular and metabolic influences of fetal smoke exposure,” European Journal of Epidemiology, vol. 26, no. 10, pp. 763–770, 2011.
  60. E. W. Harville, R. Boynton-Jarrett, C. Power, and E. Hyppönen, “Childhood hardship, maternal smoking, and birth outcomes: a prospective cohort study,” Archives of Pediatrics and Adolescent Medicine, vol. 164, no. 6, pp. 533–539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Power, K. Atherton, and C. Thomas, “Maternal smoking in pregnancy, adult adiposity and other risk factors for cardiovascular disease,” Atherosclerosis, vol. 211, no. 2, pp. 643–648, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. T. A. Slotkin, “Developmental cholinotoxicants: nicotine and chlorpyrifos,” Environmental Health Perspectives, vol. 107, no. 1, pp. 71–80, 1999. View at Scopus
  63. D. S. Lambers and K. E. Clark, “The maternal and fetal physiologic effects of nicotine,” Seminars in Perinatology, vol. 20, no. 2, pp. 115–126, 1996. View at Scopus
  64. S. P. Gray, K. Kenna, J. F. Bertram et al., “Repeated ethanol exposure during late gestation decreases nephron endowment in fetal sheep,” American Journal of Physiology, vol. 295, no. 2, pp. R568–R574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. C. J. Calvano, R. LeFevre, R. F. Mankes et al., “The incidence of renal anomalies at full term in fetal rats is synergistically increased by estradiol (but not testosterone) supplementation on day 18 of alcoholic gestation,” Journal of Pediatric Surgery, vol. 32, no. 9, pp. 1302–1306, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. J. C. Gage and K. K. Sulik, “Pathogenesis of ethanol-induced hydronephrosis and hydroureter as demonstrated following in vivo exposure of mouse embryos,” Teratology, vol. 44, no. 3, pp. 299–312, 1991. View at Scopus
  67. R. Rodrigo, L. Vergara, and E. Oberhauser, “Effect of chronic ethanol consumption on postnatal development of renal (Na + K)-ATPase in the rat,” Cell Biochemistry and Function, vol. 9, no. 3, pp. 215–222, 1991. View at Scopus
  68. G. Celsi, A. Kistner, R. Aizman et al., “Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring,” Pediatric Research, vol. 44, no. 3, pp. 317–322, 1998. View at Scopus
  69. L. A. Ortiz, A. Quan, F. Zarzar, A. Weinberg, and M. Baum, “Prenatal dexamethasone programs hypertension and renal injury in the rat,” Hypertension, vol. 41, no. 2, pp. 328–334, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Connors, N. K. Valego, L. C. Carey, J. P. Figueroa, and J. C. Rose, “Fetal and postnatal renin secretion in female sheep exposed to prenatal betamethasone,” Reproductive Sciences, vol. 17, no. 3, pp. 239–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. C. S. Wyrwoll, P. J. Mark, and B. J. Waddell, “Developmental programming of renal glucocorticoid sensitivity and the renin-angiotensin system,” Hypertension, vol. 50, no. 3, pp. 579–584, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Lelièvre-Pégorier, J. Vilar, M. L. Ferrier et al., “Mild vitamin A deficiency leads to inborn nephron deficit in the rat,” Kidney International, vol. 54, no. 5, pp. 1455–1462, 1998. View at Publisher · View at Google Scholar · View at Scopus
  73. R. M. Lewis, C. J. Petry, S. E. Ozanne, and C. N. Hales, “Effects of maternal iron restriction in the rat on blood pressure, glucose tolerance, and serum lipids in the 3-month-old offspring,” Metabolism, vol. 50, no. 5, pp. 562–567, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. S. J. M. Lisle, R. M. Lewis, C. J. Petry, S. E. Ozanne, C. N. Hales, and A. J. Forhead, “Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring,” British Journal of Nutrition, vol. 90, no. 1, pp. 33–39, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. G. D. Simonetti, L. Raio, D. Surbek, M. Nelle, F. J. Frey, and M. G. Mohaupt, “Salt sensitivity of children with low birth weight,” Hypertension, vol. 52, no. 4, pp. 625–630, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. N. Koleganova, G. Piecha, E. Ritz et al., “Both high and low maternal salt intake in pregnancy alter kidney development in the off spring,” American Journal of Physiology, vol. 301, no. 2, pp. F344–F354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. S. K. Chan, P. R. Riley, K. L. Price et al., “Corticosteroid-induced kidney dysmorphogenesis is associated with deregulated expression of known cystogenic molecules, as well as indian hedgehog,” American Journal of Physiology, vol. 298, no. 2, pp. F346–F356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Dickinson, D. W. Walker, E. M. Wintour, and K. Moritz, “Maternal dexamethasone treatment at midgestation reduces nephron number and alters renal gene expression in the fetal spiny mouse,” American Journal of Physiology, vol. 292, no. 1, pp. R453–R461, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Dagan, J. Gattineni, V. Cook, and M. Baum, “Prenatal programming of rat proximal tubule Na+/H+ exchanger by dexamethasone,” American Journal of Physiology, vol. 292, no. 3, pp. R1230–R1235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Bernstein, A. L. Werner, and R. Verani, “Nonsteroidal anti-inflammatory drug fetal nephrotoxicity,” Pediatric and Developmental Pathology, vol. 1, no. 2, pp. 153–156, 1998. View at Scopus
  81. M. J. Solhaug, P. M. Bolger, and P. A. Jose, “The developing kidney and environmental toxins,” Pediatrics, vol. 113, no. 4, pp. 1084–1091, 2004. View at Scopus
  82. M. Zaffanello, P. P. Bassareo, L. Cataldi, R. Antonucci, P. Biban, and V. Fanos, “Long-term effects of neonatal drugs on the kidney,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 23, no. 3, pp. 87–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. O. Gribouval, M. Gonzales, T. Neuhaus et al., “Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis,” Nature Genetics, vol. 37, no. 9, pp. 964–968, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. F. Sáez, V. Reverte, F. Salazar, M. T. Castells, M. T. Llinás, and F. J. Salazar, “Hypertension and sex differences in the age-related renal changes when cyclooxygenase-2 activity is reduced during nephrogenesis,” Hypertension, vol. 53, no. 2, pp. 331–337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. V. Reverte, A. Tapia, J. M. Moreno et al., “Renal effects of prolonged high protein intake and COX2 inhibition on hypertensive rats with altered renal development,” American Journal of Physiology, vol. 301, no. 2, pp. F327–F333, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. M. J. Finken, I. Meulenbelt, F. W. Dekker, et al., “Abdominal fat accumulation in adults born preterm exposed antenatally to maternal glucocorticoid treatment is dependent on glucocorticoid receptor gene variation,” Journal of Clinical Endocrinology Metabolism, vol. 96, no. 10, pp. E1650–E1655, 2011.
  87. L. Manenschijn, E. L. T. Van Den Akker, S. W. J. Lamberts, and E. F. C. Van Rossum, “Clinical features associated with glucocorticoid receptor polymorphisms: an overview,” Annals of the New York Academy of Sciences, vol. 1179, pp. 179–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. M. J. J. Finken, I. Meulenbelt, F. W. Dekker et al., “The 23K variant of the R23K polymorphism in the glucocorticoid receptor gene protects against postnatal growth failure and insulin resistance after preterm birth,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 12, pp. 4777–4782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Loria, V. Reverte, F. Salazar, F. Saez, M. T. Llinas, and F. J. Salazar, “Sex and age differences of renal function in rats with reduced ANG II activity during the nephrogenic period,” American Journal of Physiology, vol. 293, no. 2, pp. F506–F510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. D. Grigore, N. B. Ojeda, E. B. Robertson et al., “Placental insufficiency results in temporal alterations in the renin angiotensin system in male hypertensive growth restricted offspring,” American Journal of Physiology, vol. 293, no. 2, pp. R804–R811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Baserga, A. L. Bares, M. A. Hale et al., “Uteroplacental insufficiency affects kidney VEGF expression in a model of IUGR with compensatory glomerular hypertrophy and hypertension,” Early Human Development, vol. 85, no. 6, pp. 361–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. T. D. Pham, N. K. MacLennan, C. T. Chiu, G. S. Laksana, J. L. Hsu, and R. H. Lane, “Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney,” American Journal of Physiology, vol. 285, no. 5, pp. R962–R970, 2003. View at Scopus
  93. C. M. Lynch, R. O'Kelly, B. Stuart, A. Treumann, R. Conroy, and C. L. Regan, “The role of thromboxane A2 in the pathogenesis of intrauterine growth restriction associated with maternal smoking in pregnancy,” Prostaglandins and Other Lipid Mediators, vol. 95, no. 1–4, pp. 63–67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. A. M. Nuyt, “Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models,” Clinical Science, vol. 114, no. 1-2, pp. 1–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. L. Marpeau, J. Bouillie, J. Barrat, and J. Milliez, “Obstetrical advantages and perinatal risks of indomethacin: a report of 818 cases,” Fetal Diagnosis and Therapy, vol. 9, no. 2, pp. 110–115, 1994. View at Scopus
  96. A. J. van der Heijden, A. P. Provoost, J. Nauta, E. D. Wolff, and P. J. Sauer, “Indomethacin as an inhibitor of preterm labor. Effect on postnatal renal function,” Contributions to Nephrology, vol. 67, pp. 152–154, 1988. View at Scopus
  97. M. P. R. Walker, T. R. Moore, and R. A. Brace, “Indomethacin and arginine vasopressin interaction in the fetal kidney: a mechanism of oliguria,” American Journal of Obstetrics and Gynecology, vol. 171, no. 5, pp. 1234–1241, 1994. View at Scopus
  98. S. C. Langley-Evans, S. J. M. Welham, and A. A. Jackson, “Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat,” Life Sciences, vol. 64, no. 11, pp. 965–974, 1999. View at Publisher · View at Google Scholar · View at Scopus
  99. H. Gao, U. Yallampalli, and C. Yallampalli, “Maternal protein restriction reduces expression of angiotensin I-converting enzyme 2 in rat placental labyrinth zone in late pregnancy,” Biology of Reproduction, vol. 86, no. 2, pp. 1–8, 2012.
  100. H. Gao, U. Yallampalli, and C. Yallampalli, “Protein restriction to pregnant rats increases the plasma levels of angiotensin II and expression of angiotensin II receptors in uterine arteries,” Biology of Reproduction, vol. 86, no. 3, pp. 1–8, 2012.
  101. S. H. Alwasel, I. Kaleem, V. Sahajpal, and N. Ashton, “Maternal protein restriction reduces angiotensin II AT1 and AT2 receptor expression in the fetal rat kidney,” Kidney and Blood Pressure Research, vol. 33, no. 4, pp. 251–259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. A. J. Watkins, E. S. Lucas, C. Torrens et al., “Maternal low-protein diet during mouse pre-implantation development induces vascular dysfunction and altered renin-angiotensin-system homeostasis in the offspring,” British Journal of Nutrition, vol. 103, no. 12, pp. 1762–1770, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. Z. Zhang, J. Quinlan, W. Hoy et al., “A common RET variant is associated with reduced newborn kidney size and function,” Journal of the American Society of Nephrology, vol. 19, no. 10, pp. 2027–2034, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. J. Quinlan, M. Lemire, T. Hudson et al., “A common variant of the PAX2 gene is associated with reduced newborn kidney size,” Journal of the American Society of Nephrology, vol. 18, no. 6, pp. 1915–1921, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. T. Lloyd, P. Foster, P. Rhodes, et al., “Protein-energy malnutrition during early gestation in sheep blunts fetal renal vascular and nephron development and compromises adult renal function,” Journal of Physiology, vol. 590, no. 2, pp. 377–393, 2012.
  106. P. Pladys, F. Sennlaub, S. Brault et al., “Microvascular rarefaction and decreased angiogenesis in rats with fetal programming of hypertension associated with exposure to a low-protein diet in utero,” American Journal of Physiology, vol. 289, no. 6, pp. R1580–R1588, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. H. A. J. Struijker Boudier, “Arteriolar and capillary remodelling in hypertension,” Drugs, vol. 58, no. 1, pp. 37–40, 1999. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Wesseling, M. P. Koeners, and J. A. Joles, “Salt sensitivity of blood pressure: developmental and sex-related effects,” American Journal of Clinical Nutrition, vol. 94, no. 6, pp. 1928S–1932S, 2011.
  109. S. H. Alwasel, D. J. Barker, and N. Ashton, “Prenatal programming of renal salt wasting resets postnatal salt appetite, which drives food intake in the rat,” Clinical Science, vol. 122, no. 6, pp. 281–288, 2012.
  110. J. Li, G. R. Khodus, M. Kruusmägi et al., “Ouabain protects against adverse developmental programming of the kidney,” Nature Communications, vol. 1, no. 4, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. G. R. Khodus, M. Kruusmägi, J. Li, X. L. Liu, and A. Aperia, “Calcium signaling triggered by ouabain protects the embryonic kidney from adverse developmental programming,” Pediatric Nephrology, vol. 26, no. 9, pp. 1479–1482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. T. Stewart, F. F. Jung, J. Manning, and V. M. Vehaskari, “Kidney immune cell infiltration and oxidative stress contribute to prenatally programmed hypertension,” Kidney International, vol. 68, no. 5, pp. 2180–2188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. J. L. Tarry-Adkins, J. H. Chen, R. H. Jones, N. H. Smith, and S. E. Ozanne, “Poor maternal nutrition leads to alterations in oxidative stress, antioxidant defense capacity, and markers of fibrosis in rat islets: potential underlying mechanisms for development of the diabetic phenotype in later life,” FASEB Journal, vol. 24, no. 8, pp. 2762–2771, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. V. Muller, Y. L. Tain, B. Croker, and C. Baylis, “Chronic nitric oxide deficiency and progression of kidney disease after renal mass reduction in the C57Bl6 mouse,” American Journal of Nephrology, vol. 32, no. 6, pp. 575–580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. Y. L. Tain, S. Ghosh, R. J. Krieg, and C. Baylis, “Reciprocal changes of renal neuronal nitric oxide synthase-α and -β associated with renal progression in a neonatal 5/6 nephrectomized rat model,” Pediatrics and Neonatology, vol. 52, no. 2, pp. 66–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. G. Cambonie, B. Comte, C. Yzydorczyk et al., “Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet,” American Journal of Physiology, vol. 292, no. 3, pp. R1236–R1245, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. J. P. Figueroa, J. C. Rose, G. A. Massmann, J. Zhang, and G. Acuña, “Alterations in fetal kidney development and elevations in arterial blood pressure in young adult sheep after clinical doses of antenatal glucocorticoids,” Pediatric Research, vol. 58, no. 3, pp. 510–515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. D. Grigore, N. B. Ojeda, and B. T. Alexander, “Sex differences in the fetal programming of hypertension,” Gender Medicine, vol. 5, no. 1, pp. S121–S132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. N. B. Ojeda, D. Grigore, E. B. Robertson, and B. T. Alexander, “Estrogen protects against increased blood pressure in postpubertal female growth restricted offspring,” Hypertension, vol. 50, no. 4, pp. 679–685, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. S. J. Swenson, R. C. Speth, and J. P. Porter, “Effect of a perinatal high-salt diet on blood pressure control mechanisms in young Sprague-Dawley rats,” American Journal of Physiology, vol. 286, no. 4, pp. R764–R770, 2004. View at Scopus
  121. S. S. El-Dahr, L. M. Harrison-Bernard, S. Dipp, I. V. Yosipiv, and S. Meleg-Smith, “Bradykinin B2 null mice are prone to renal dysplasia: gene-environment interactions in kidney development,” Physiological Genomics, vol. 2000, no. 3, pp. 121–131, 2000. View at Scopus
  122. K. Bonamy, K. Källén, and M. Norman, “High blood pressure in 2.5-year-old children born extremely preterm,” Pediatrics, vol. 129, no. 5, pp. e1199–e1220, 2012.
  123. M. Norman, “Low birth weight and the developing vascular tree: a systematic review,” Acta Paediatrica, vol. 97, no. 9, pp. 1165–1172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Kistner, L. Jacobson, S. H. Jacobson, E. Svensson, and A. Hellstrom, “Low gestational age associated with abnormal retinal vascularization and increased blood pressure in adult women,” Pediatric Research, vol. 51, no. 6, pp. 675–680, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. M. B. Belfort, S. L. Rifas-Shiman, J. Rich-Edwards, K. P. Kleinman, and M. W. Gillman, “Size at birth, infant growth, and blood pressure at three years of age,” Journal of Pediatrics, vol. 151, no. 6, pp. 670–674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. J. L. Tarry-Adkins, M. S. Martin-Gronert, J. H. Chen, R. L. Cripps, and S. E. Ozanne, “Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats,” FASEB Journal, vol. 22, no. 6, pp. 2037–2044, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. P. Rossi, L. Tauzin, E. Marchand, A. Boussuges, J. Gaudart, and Y. Frances, “Respective roles of preterm birth and fetal growth restriction in blood pressure and arterial stiffness in adolescence,” Journal of Adolescent Health, vol. 48, no. 5, pp. 520–522, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Vento, M. Asensi, J. Sastre et al., “Hyperoxemia caused by resuscitation with pure oxygen may alter intracellular redox status by increasing oxidized glutathione in asphyxiated newly born infants,” Seminars in Perinatology, vol. 26, no. 6, pp. 406–410, 2002. View at Publisher · View at Google Scholar · View at Scopus
  129. T. M. Asikainen, P. Heikkil, R. Kaarteenaho-Wiik, V. L. Kinnula, and K. O. Raivio, “Cell-specific expression of manganese superoxide dismutase protein in the lungs of patients with respiratory distress syndrome, chronic lung disease, or persistent pulmonary hypertension,” Pediatric Pulmonology, vol. 32, no. 3, pp. 193–200, 2001. View at Publisher · View at Google Scholar · View at Scopus
  130. C. M. Law, A. W. Shiell, C. A. Newsome et al., “Fetal, infant, and childhood growth and adult blood pressure: a longitudinal study from birth to 22 years of age,” Circulation, vol. 105, no. 9, pp. 1088–1092, 2002. View at Publisher · View at Google Scholar · View at Scopus
  131. G. M. Hermann, R. L. Miller, G. E. Erkonen et al., “Neonatal catch up growth increases diabetes susceptibility but improves behavioral and cardiovascular outcomes of low birth weight male mice,” Pediatric Research, vol. 66, no. 1, pp. 53–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. H. Russcher, P. Smit, E. L. T. Van Den Akker et al., “Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 10, pp. 5804–5810, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. E. F. van Rossum and S. W. Lamberts, “Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition,” Recent Progress in Hormone Research, vol. 59, pp. 333–357, 2004. View at Scopus
  134. A. H. Hemachandra, P. P. Howards, S. L. Furth, and M. A. Klebanoff, “Birth weight, postnatal growth, and risk for high blood pressure at 7 years of age: results from the Collaborative Perinatal Project,” Pediatrics, vol. 119, no. 6, pp. e1264–e1270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. L. Yvan-Charvet and A. Quignard-Boulangé, “Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity,” Kidney International, vol. 79, no. 2, pp. 162–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. J. C. Jimenez-Chillaron and M. E. Patti, “To catch up or not to catch up: is this the question? Lessons from animal models,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 14, no. 1, pp. 23–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. F. Boubred, L. Daniel, C. Buffat et al., “Early postnatal overfeeding induces early chronic renal dysfunction in adult male rats,” American Journal of Physiology, vol. 297, no. 4, pp. F943–F951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. C. L. Smith, “A shifting paradigm: histone deacetylases and transcriptional activation,” BioEssays, vol. 30, no. 1, pp. 15–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. A. Nottke, M. P. Colaiácovo, and Y. Shi, “Developmental roles of the histone lysine demethylases,” Development, vol. 136, no. 6, pp. 879–889, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. W. D. Rees, S. M. Hay, D. S. Brown, C. Antipatis, and R. M. Palmer, “Maternal protein deficiency causes hypermethylation of DNA in the livers of rat fetuses,” Journal of Nutrition, vol. 130, no. 7, pp. 1821–1826, 2000. View at Scopus
  141. M. Suter, J. Ma, A. S. Harris, et al., “Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression,” Epigenetics, vol. 6, no. 11, pp. 1284–1294, 2011.
  142. S. R. Patel, D. Kim, I. Levitan, and G. R. Dressler, “The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex,” Developmental Cell, vol. 13, no. 4, pp. 580–592, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. G. M. Lefevre, S. R. Patel, D. Kim, L. Tessarollo, and G. R. Dressler, “Altering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype,” PLoS Genetics, vol. 6, no. 10, Article ID e1001142, 2010. View at Scopus
  144. Z. Saifudeen, S. Dipp, J. Stefkova, X. Yao, S. Lookabaugh, and S. S. El-Dahr, “p53 regulates metanephric development,” Journal of the American Society of Nephrology, vol. 20, no. 11, pp. 2328–2337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. S. Chen, C. Bellew, X. Yao, et al., “Histone deacetylase (HDAC) activity is critical for embryonic kidney gene expression, growth, and differentiation,” Journal of Biological Chemistry, vol. 286, no. 37, pp. 32775–32789, 2011.
  146. J. Ho and J. A. Kreidberg, “The long and short of microRNAs in the kidney,” Journal of the American Society of Nephrology, vol. 23, no. 3, pp. 400–404, 2012.
  147. L. M. Pastorelli, S. Wells, M. Fray et al., “Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract,” Mammalian Genome, vol. 20, no. 3, pp. 140–151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. E. Hummler, “Epithelial sodium channel, salt intake, and hypertension,” Current Hypertension Reports, vol. 5, no. 1, pp. 11–18, 2003. View at Scopus
  149. H. Tamura, L. Schild, N. Enomoto et al., “Liddle disease caused by a missense mutation of β subunit of the epithelial sodium channel gene,” Journal of Clinical Investigation, vol. 97, no. 7, pp. 1780–1784, 1996. View at Scopus
  150. W. Zhang, X. Xia, D. I. Jalal et al., “Aldosterone-sensitive repression of ENaCα transcription by a histone H3 lysine-79 methyltransferase,” American Journal of Physiology, vol. 290, no. 3, pp. C936–C946, 2006. View at Publisher · View at Google Scholar · View at Scopus
  151. H. M. Cho, H. A. Lee, H. Y. Kim, H. S. Han, and I. K. Kim, “Expression of Na+-K+-2Cl- cotransporter 1 is epigenetically regulated during postnatal development of hypertension,” American Journal of Hypertension, vol. 24, no. 12, pp. 1286–1293, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. J. W. Meyer, M. Flagella, R. L. Sutliff et al., “Decreased blood pressure and vascular smooth muscle tone in mice lacking basolateral Na+-K+-2Cl- cotransporter,” American Journal of Physiology, vol. 283, no. 5, pp. H1846–H1855, 2002. View at Scopus
  153. M. P. Vélez, I. S. Santos, A. Matijasevich et al., “Maternal low birth weight and adverse perinatal outcomes: the 1982 Pelotas Birth Cohort Study, Brazil,” Revista Panamericana de Salud Publica, vol. 26, no. 2, pp. 112–119, 2009. View at Scopus
  154. P. D. Gluckman, M. A. Hanson, C. Cooper, and K. L. Thornburg, “Effect of in utero and early-life conditions on adult health and disease,” New England Journal of Medicine, vol. 359, no. 1, pp. 61–73, 2008. View at Publisher · View at Google Scholar · View at Scopus