About this Journal Submit a Manuscript Table of Contents
International Journal of Navigation and Observation
Volume 2011 (2011), Article ID 416828, 11 pages
http://dx.doi.org/10.1155/2011/416828
Research Article

Evaluation of Matrix Square Root Operations for UKF within a UAV GPS/INS Sensor Fusion Application

Department of Mechanical and Aerospace Engineering, West Virginia University, P.O. Box 6106, Morgantown, WV 26506, USA

Received 22 July 2011; Revised 14 December 2011; Accepted 21 December 2011

Academic Editor: Jinling Wang

Copyright © 2011 Matthew Rhudy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Changchun, S. Li, W. Hai-bo, and L. Tianjie, “The research on unmanned aerial vehicle remote sensing and its applications,” in Proceedings of the IEEE International Conference on Advanced Computer Control (ICACC '10), pp. 644–647, Shenyang, China, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Jensen, M. Baumann, and Y. Chen, “Low-cost multispectral aerial imaging using autonomous runway-free small flying wing vehicles,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '08), pp. 506–509, Boston, Mass, USA, July 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Nagai, T. Chen, R. Shibasaki, H. Kumagai, and A. Ahmed, “UAV-borne 3-D mapping system by multisensor integration,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, Article ID 4783021, pp. 701–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Suzuki, Y. Amano, and T. Hashizume, “Vision based localization of a small UAV for generating a large mosaic image,” in Proceedings of the SICE Annual Conference (SICE '10), pp. 2960–2964, Taipei, Taiwan, October 2010. View at Scopus
  5. S. Dascalu, “Remote sensing using autonomous UAVs suitable for less developed countries,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Enschede, Netherlands, vol. 34, no. 30, 2006.
  6. G. Zhou and D. Zang, “Civil UAV system for earth observation,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '07), Barcelona, Spain, 2007.
  7. J. Everaerts, “The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, vol. 36, no. B1, pp. 1187–1192, 2008.
  8. M. S. Grewal, L. R. Weill, and A. P. Andrew, Global Positioning, Inertial Navigation & Integration, John Wiley & Sons, New York, NY, USA, 2nd edition, 2007.
  9. E. Kaplan and C. Heagarty, Understanding GPS Principles and Applications, Arttech House, Norwood, Mass, USA, 2nd edition, 2006.
  10. J. L. Crassidis, “Sigma-point kalman filtering for integrated GPS and inertial navigation,” in Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, San Francisco, Calif, USA, 2005.
  11. R. D. Van Merwe, E. A. Wan, and S. I. Julier, “Sigma-point kalman filters for nonlinear estimation and sensor-fusion—applications to integrated navigation,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, pp. 1735–1764, Providence, RI, USA, August 2004. View at Scopus
  12. T. Fiorenzani, et al., “Comparative Study of Unscented Kalman Filter and Extended Kalman Filter for Position/Attitude Estimation in Unmanned Aerial Vehicles,” IASI-CNR, R. 08-08, 2008.
  13. J. Gross, Y. Gu, M. Rhudy, S. Gururajan, and M. Napolitano, “Flight test evaluation of GPS/INS sensor fusion algorithms for attitude estimation,” IEEE Transactions on Aerospace Electronic Systems. In press.
  14. S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to nonlinear systems,” in Signal Processing, Sensor Fusion, and Target Recognition VI, vol. 3068 of SPIE Proceedings Series, pp. 182–193, July 1997. View at Scopus
  15. J. Gross, et al., “A comparison of extended kalman filter, sigma-point kalman filter, and particle filter in GPS/INS sensor fusion,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, 2010.
  16. R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction theory,” Journal of Basic Engineering, vol. 83, pp. 95–108, 1961.
  17. N. El-Sheimy, E. H. Shin, and X. Niu, “Kalman filter face-off: extended vs. Unscented kalman filters for integrated GPS and MEMS inertial,” in Proceedings of the International Symposium on Global Navigation Satellite Systems (GNSS '06), pp. 48–54, 2006.
  18. M. Rhudy, Y. Gu, J. Gross, and M. Napolitano, “Sensitivity analysis of EKF and UKF in GPS/INS sensor fusion,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, Portland, Ore, USA, 2011.
  19. R. van der Merwe and E. A. Wan, “The square-root unscented Kalman filter for state and parameter-estimation,” in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 3461–3464, Salt Lake City, Utah, USA, May 2001. View at Scopus
  20. N. J. Higham, Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 2008.
  21. J. Wendel, J. Metzger, R. Moenikes, A. Maier, and G. F. Trommer, “A Performance comparison of tightly coupled GPS/INS navigation systems based on extended and sigma point kalman filters,” Journal of the Institute of Navigation, vol. 53, no. 1, pp. 21–31, 2006. View at Scopus
  22. N. B. Stastny, R. A. Bettinger, and F. R. Chavez, “Comparison of the extended and unscented Kalman filters for angles based relative navigation,” in Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, USA, August 2008. View at Scopus
  23. Y. Wu, D. Hu, M. Wu, and X. Hu, “Unscented Kalman filtering for additive noise case: augmented vs. non-augmented,” in Proceedings of the American Control Conference (ACC '05), pp. 4051–4055, Portland, Ore, USA, June 2005. View at Scopus
  24. F. Sun, G. Li, and J. Wang, “Unscented kalman filter using augmented state in the presence of additive noise,” in Proceedings of the IITA International Conference on Control, Automation and Systems Engineering (CASE '09), pp. 379–382, Zhangjiajie, China, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. C. VanDyke, J. L. Schwartz, and C. D. Hall, “Unscented kalman filtering for spacecraft attitude state and parameter estimation,” in Proceedings of the AIAA Space Flight Mechanics Meeting, Maui, Hawaii, USA, 2004.
  26. S. A. Banani and M. A. Masnadi-Shirazi, “A new version of unscented kalman filter,” World Academy of Science, Engineering, and Technology, vol. 20, pp. 192–197, 2007.
  27. B. Meini, “The matrix square root from a new functional perspective: theoretical results and computational issues,” SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 2, pp. 362–376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Gross, Y. Gu, and M. R. Napolitano, “A systematic approach for extended kalman filter tuning and low-cost inertial sensor calibration within a GPS/INS application,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, 2010.
  29. J. Jarrell, Y. Gu, B. Seanor, and M. Napolitano, “Aircraft attitude, position, and velocity determination using sensor fusion,” in Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, USA, August 2008. View at Scopus
  30. D. Simon, Optimal State Estimation, Wiley, New York, NY, USA, 2006.
  31. D. A. McQuarrie, Mathematical Methods for Scientists and Engineers, chapter 10, University Science Books, Sausalito, Calif, USA, 1st edition, 2003.
  32. M. M. Konstantinov, Perturbation Theory for Matrix Equations, Elsevier Science B.V., Amsterdam, The Netherlands, 2003.
  33. N. J. Higham, “Newton’s method for the matrix square root,” Mathematics of Computation, vol. 46, no. 174, pp. 537–549, 1986.
  34. S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub, “Approximating the logarithm of a matrix to specified accuracy,” SIAM Journal on Matrix Analysis and Applications, vol. 22, no. 4, pp. 1112–1125, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, Philadelphia, Pa, USA, 1st edition, 1997.
  36. N. J. Higham, “Analysis of the cholesky decomposition of a semi-definite matrix,” in Reliable Numerical Computation, pp. 161–185, Oxford University Press, Oxford, UK, 1990.
  37. N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 2nd edition, 2002.
  38. D. W. Tufts and C. D. Melissinos, “Simple, effective computation of principal eigenvectors and their eigenvalues and application to high-resolution estimation of frequencies,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 5, pp. 1046–1053, 1986. View at Scopus
  39. J. Roskam, Airplane Flight Dynamics and Automatic Flight Controls, chapter 1, DARcorporation, Lawrence, Kan, USA, 2003.
  40. F. L. Lewis and V. L. Syrmos, Optimal Control, chapter 6, Wiley & Sons, New York, NY, USA, 2nd edition, 1995.
  41. Y. Gu, B. Seanor, G. Campa, M. R. Napolitano, S. Gururajan, and L. Rowe, “Autonomous formation flight: Hardware development,” in Proceedings of the 14th Mediterranean Conference on Control and Automation (MED '06), Ancona, Italy, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Seanor, Y. Gu, M. R. Napolitano, G. Campa, S. Gururajan, and L. Rowe, “3-Aircraft formation flight experiment,” in Proceedings of the 14th Mediterranean Conference on Control and Automation (MED '06), Ancona, Italy, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Gu, B. Seanor, G. Campa et al., “Design and flight testing evaluation of formation control laws,” IEEE Transactions on Control Systems Technology, vol. 14, no. 6, pp. 1105–1112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. M. G. Perhinschi, J. Burken, and G. Campa, “Comparison of different neural augmentations for the fault tolerant control laws of the WVU YF-22 model aircraft,” in Proceedings of the 14th Mediterranean Conference on Control and Automation (MED '06), Ancona, Italy, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Gross, Y. Gu, B. Seanor, S. Gururajan, and M. R. Napolitano, “Advanced Research Integrated Avionic (ARIA) system for fault-tolerant flight research,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Chicago, Ill, USA, August 2009. View at Scopus
  46. E. Kreyszig, Advanced Engineering Mathematics, chapter 20, Wiley & Sons, New York, NY, USA, 9th edition, 2006.