About this Journal Submit a Manuscript Table of Contents
International Journal of Navigation and Observation
Volume 2012 (2012), Article ID 281592, 10 pages
http://dx.doi.org/10.1155/2012/281592
Research Article

A Comparison of Parametric and Sample-Based Message Representation in Cooperative Localization

1Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
2Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
3Department of Computer Engineering, Thai-Nichi Institute of Technology, Bangkok 10250, Thailand
4Department of Signals and Systems, Chalmers University of Technology, Gothenburg 412 96, Sweden
5Laboratory for Information and Decision Systems, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA

Received 14 April 2012; Accepted 18 July 2012

Academic Editor: Elena Lohan

Copyright © 2012 Jaime Lien et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Caffery and G. L. Stüber, “Overview of radiolocation in CDMA cellular systems,” IEEE Communications Magazine, vol. 36, no. 4, pp. 38–45, 1998. View at Scopus
  2. A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless location: challenges faced in developing techniques for accurate wireless location information,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 24–40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless sensor networks for habitat monitoring,” in Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications (WSNA '02), pp. 88–97, ACM Press, September 2002. View at Scopus
  4. T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “Range-free localization schemes for large scale sensor networks,” in Proceedings of the 9th Annual International Conference on Mobile Computing and Networking (MobiCom '03), pp. 81–95, September 2003. View at Scopus
  5. K. Pahlavan, X. Li, and J. P. Mäkelä, “Indoor geolocation science and technology,” IEEE Communications Magazine, vol. 40, no. 2, pp. 112–118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. J. Ingram, D. Harmer, and M. Quinlan, “Ultrawideband indoor positioning systems and their use in emergencies,” in Proceedings of the Position Location and Navigation Symposium (PLANS '04), pp. 706–715, April 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C.-Y. Chong and S. P. Kumar, “Sensor networks: evolution, opportunities, and challenges,” Proceedings of the IEEE, vol. 91, no. 8, pp. 1247–1256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Yang and B. Sikdar, “A protocol for tracking mobile targets using sensor networks,” in Proceedings of the 1st IEEE International Workshop on Sensor Network Protocols and Applications, pp. 71–81, May 2003. View at Publisher · View at Google Scholar
  9. X. Ji and H. Zha, “Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling,” in Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '04), vol. 4, pp. 2652–2661, March 2004. View at Scopus
  10. R. A. Marjamaa, P. M. Torkki, M. I. Torkki, and O. A. Kirvelä, “Time accuracy of a radio frequency identification patient tracking system for recording operating room timestamps,” Anesthesia & Analgesia, vol. 102, no. 4, pp. 1183–1186, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo localization: efficient position estimation for mobile robots,” in Proceedings of the 16th National Conference on Artificial Intelligence (AAAI '99), pp. 343–349, Orlando, Fla, USA, July 1999. View at Scopus
  12. J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by tracking geometric beacons,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 376–382, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Jain, A. Puri, and R. Sengupta, “Geographical routing using partial information for wireless ad hoc networks,” IEEE Personal Communications, vol. 8, no. 1, pp. 48–57, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Frey, “Scalable geographic routing algorithms for wireless ad hoc networks,” IEEE Network, vol. 18, no. 4, pp. 18–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. R. J. Fontana and S. J. Gunderson, “Ultra-wideband precision asset location system,” in Proceedings of IEEE Conference on Ultra Wideband Systems and Technologies (UWBST '02), vol. 21, no. 1, pp. 147–150, Baltimore, Md, USA, May 2002.
  16. W. C. Chung and D. Ha, “An accurate ultra wideband (UWB) ranging for precision asset location,” in Proceedings of IEEE Conference on Ultra Wideband Systems and Technologies (UWBST '03), pp. 389–393, November 2003.
  17. N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 54–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Castillo-Effen, W. A. Moreno, M. A. Labrador, and K. P. Valavanis, “Adapting sequential Monte-Carlo estimation to cooperative localization in wireless sensor networks,” in Proceedings of IEEE International Conference on Mobile Ad Hoc and Sensor Sysetems (MASS '06), pp. 656–661, Vancouver, Canada, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. T. Ihler, J. W. Fisher III, R. L. Moses, and A. S. Willsky, “Nonparametric belief propagation for self-localization of sensor networks,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 4, pp. 809–819, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless networks,” Proceedings of the IEEE, vol. 97, no. 2, pp. 427–450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. T. Ihler, J. W. Fisher, and A. S. Willsky, “Particle filtering under communications constraints,” in Proceedings of the 13th IEEE/SP Workshop on Statistical Signal Processing, pp. 89–94, Bordeaux, France, July 2005. View at Scopus
  22. M. Welling and J. J. Lim, “A distributed message passing algorithm for sensor localization,” in Proceedings of the 17th International Conference on Artificial Neural Networks (ICANN '07), pp. 767–775, September 2007. View at Scopus
  23. C. Pedersen, T. Pedersen, and B. H. Fleury, “A variational message passing algorithm for sensor self-localization in wireless networks,” in Proceedings of IEEE International Symposium on Information Theory Proceedings (ISIT '11), pp. 2158–2162, Saint-Petersburg, Russia, July 2011. View at Publisher · View at Google Scholar
  24. M. Caceres, F. Penna, H. Wymeersch, and R. Garello, “Hybrid cooperative positioning based on distributed belief propagation,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 10, pp. 1948–1958, 2011. View at Publisher · View at Google Scholar
  25. M. Z. Win and R. A. Scholtz, “Characterization of ultra-wide bandwidth wireless indoor channels: a communication-theoretic view,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 9, pp. 1613–1627, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Z. Win and R. A. Scholtz, “On the robustness of ultra-wide bandwidth signals in dense multipath environments,” IEEE Communications Letters, vol. 2, no. 2, pp. 51–53, 1998. View at Scopus
  27. A. F. Molisch, J. R. Foerster, and M. Pendergrass, “Channel models for ultrawideband personal area networks,” IEEE Wireless Communications, vol. 10, no. 6, pp. 14–21, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J.-Y. Lee and R. A. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 9, pp. 1677–1683, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Z. Win, “Ranging with ultrawide bandwidth signals in multipath environments,” Proceedings of the IEEE, vol. 97, no. 2, pp. 404–425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Suwansantisuk and M. Z. Win, “Multipath aided rapid acquisition: optimal search strategies,” IEEE Transactions on Information Theory, vol. 53, no. 1, pp. 174–193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Xu and L. Yang, “Timing with dirty templates for low-resolution digital UWB receivers,” IEEE Transactions on Wireless Communications, vol. 7, no. 1, pp. 54–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Z. Win, P. C. Pinto, and L. A. Shepp, “A mathematical theory of network interference and its applications,” Proceedings of the IEEE, vol. 97, no. 2, pp. 205–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. N. C. Beaulieu and D. J. Young, “Designing time-hopping ultrawide bandwidth receivers for multiuser interference environments,” Proceedings of the IEEE, vol. 97, no. 2, pp. 255–284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Z. Win, G. Chrisikos, and A. F. Molisch, “Wideband diversity in multipath channels with nonuniform power dispersion profiles,” IEEE Transactions on Wireless Communications, vol. 5, no. 5, pp. 1014–1022, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Z. Win, G. Chrisikos, and N. R. Sollenberger, “Performance of Rake reception in dense multipath channels: implications of spreading bandwidth and selection diversity order,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 8, pp. 1516–1525, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Falsi, D. Dardari, L. Mucchi, and M. Z. Win, “Time of arrival estimation for UWB localizers in realistic environments,” EURASIP Journal on Advances in Signal Processing, vol. 2006, Article ID 32082, pp. 1–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Venkatesh and R. M. Buehrer, “Non-line-of-sight identification in ultra-wideband systems based on received signal statistics,” IET Microwaves, Antennas & Propagation, vol. 1, no. 6, pp. 1120–1130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. D. B. Jourdan, J. J. Deyst Jr., M. Z. Win, and N. Roy, “Monte Carlo localization in dense multipath environments using UWB ranging,” in Proceedings of IEEE International Conference on Ultra-Wideband (ICU '05), pp. 314–319, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Venkatesh and R. M. Buehrer, “Multiple-access design for ad hoc UWB position-location networks,” in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC '06), vol. 4, pp. 1866–1873, Las Vegas, Nev, USA, April 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Dardari, A. Conti, J. Lien, and M. Z. Win, “The effect of cooperation on UWB-based positioning systems using experimental data,” EURASIP Journal on Advances in Signal Processing, vol. 2008, Article ID 513873, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Venkatesh and R. M. Buehrer, “Power control in UWB position-location networks,” in Proceedings of IEEE International Conference on Communications (ICC '06), vol. 9, pp. 3953–3959, Istanbul, Turkey, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. W. C. Headley, C.R.C.M. da Suva, and R. M. Buehrer, “Indoor location positioning of non-active objects using ultra-wideband radios,” in Proceedings of IEEE Radio and Wireless Symposium (RWS '07), pp. 105–108, Long Beach, Calif, USA, January 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. D. B. Jourdan, D. Dardari, and M. Z. Win, “Position error bound for UWB localization in dense cluttered environments,” IEEE Transactions on Aerospace and Electronic Systems, vol. 44, no. 2, pp. 613–628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Shen and M. Z. Win, “Fundamental limits of wideband localization—part I: a general framework,” IEEE Transactions on Information Theory, vol. 56, no. 10, pp. 4956–4980, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Shen, H. Wymeersch, and M. Z. Win, “Fundamental limits of wideband localization—part II: cooperative networks,” IEEE Transactions on Information Theory, vol. 56, no. 10, pp. 4981–5000, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Shen and M. Z. Win, “On the accuracy of localization systems using wideband antenna arrays,” IEEE Transactions on Communications, vol. 58, no. 1, pp. 270–280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Gezici, Z. Tian, G. B. Giannakis et al., “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 70–84, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Oppermann, M. Hämäläinen, and J. Iinatti, UWB Theory and Applications, John Wiley & Sons, 2004.
  49. H. Wymeersch, Iterative Receiver Design, Cambridge University Press, 2007.
  50. D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A Monte Carlo algorithm for multi-robot localization,” Tech. Rep. CMU-CS-99-120, Computer Science Department, Carnegie Mellon University, Pittsburgh, Pa, USA, 1999.
  51. D. MacKay, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003.
  52. A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling methods for Bayesian filtering,” Statistics and Computing, vol. 10, no. 3, pp. 197–208, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. Botev, Nonparametric Density Estimation Via Diffusion Mixing, Postgraduate Series, The University of Queensland, 2007, http://espace.library.uq.edu.au/view/UQ:120006.
  54. J. Lien, A framework for cooperative localization in ultra-wideband wireless networks [M.S. thesis], Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Mass, USA, 2007.