About this Journal Submit a Manuscript Table of Contents
International Journal of Optics
Volume 2011 (2011), Article ID 374581, 6 pages
http://dx.doi.org/10.1155/2011/374581
Research Article

Nonlinear Phenomena of Ultra-Wide-Band Radiation in a Photonic Crystal Fibre

Cirta'Com laboratory, Engineering School of Communication of Tunis (Sup'Com), University of Carthage, Ghazala Technopark, Ariana 2083, Tunisia

Received 22 May 2011; Revised 2 September 2011; Accepted 7 September 2011

Academic Editor: Wojtek J. Bock

Copyright © 2011 Rim Cherif and Mourad Zghal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Physical Review Letters, vol. 24, no. 11, pp. 584–587, 1970. View at Publisher · View at Google Scholar · View at Scopus
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics Letters, vol. 25, no. 1, pp. 25–27, 2000. View at Scopus
  3. S. Coen, A. H. L. Chau, R. Leonhardt et al., “White-light supercontinuum generation with 60 ps pump pulses in a photonic crystal fiber,” Optics Letters, vol. 26, no. 17, pp. 1356–1358, 2001. View at Scopus
  4. T. M. Monro and D. J. Richardson, “Holey optical fibres: fundamental properties and device applications,” Comptes Rendus Physique, vol. 4, no. 1, pp. 175–186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. P. S. J. Russell, “Photonic-crystal fibers,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4729–4749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Optical Fiber Technology, vol. 5, no. 3, pp. 305–330, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technology Letters, vol. 12, no. 7, pp. 807–809, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Optics Letters, vol. 24, no. 20, pp. 1395–1397, 1999. View at Scopus
  9. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Physical Review Letters, vol. 87, no. 20, Article ID 203901, pp. 203901/1–203901/4, 2001. View at Scopus
  10. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Optics Express, vol. 10, no. 20, pp. 1083–1098, 2002. View at Scopus
  11. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Applied Physics Letters, vol. 82, no. 14, pp. 2197–2199, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. P. A. Champert, V. Couderc, P. Leproux et al., “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Optics Express, vol. 12, no. 19, pp. 4366–4371, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Sang, P. L. Chu, and C. Yu, “Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications,” Optical and Quantum Electronics, vol. 37, no. 10, pp. 965–994, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Cherif, A. B. Salem, M. Zghal et al., “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation,” Optical Engineering, vol. 49, pp. 095002-1–095002-6, 2010.
  15. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Optics Letters, vol. 30, no. 23, pp. 3132–3134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Cherif, M. Zghal, I. Nikolov, and M. Danailov, “High energy femtosecond supercontinuum light generation in large mode area photonic crystal fiber,” Optics Communications, vol. 283, no. 21, pp. 4378–4382, 2010.
  17. L. Tartara, I. Cristiani, and V. Degiorgio, “Blue light and infrared continuum generation by soliton fission in a microstructured fiber,” Applied Physics B: Lasers and Optics, vol. 77, no. 2-3, pp. 307–311, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Optics Express, vol. 16, no. 3, pp. 2147–2152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. P. Agrawal, Nonlinear Fibre Optics, Academic Press, San Diego, Calif, USA, 3rd edition, 1995.
  20. M. Zghal and R. Cherif, “Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fibers,” Optical Engineering, vol. 46, no. 12, Article ID 128002, pp. 1–7, 2007.
  21. G. Genty, M. Lehtonen, and H. Ludvigsen, “Route to broadband blue-light generation in microstructured fibers,” Optics Letters, vol. 30, no. 7, pp. 756–758, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Optics Express, vol. 12, no. 1, pp. 124–135, 2004. View at Publisher · View at Google Scholar · View at Scopus