About this Journal Submit a Manuscript Table of Contents
International Journal of Optics
Volume 2011 (2011), Article ID 825629, 12 pages
http://dx.doi.org/10.1155/2011/825629
Review Article

MEMS-Based Endoscopic Optical Coherence Tomography

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA

Received 31 January 2011; Accepted 1 April 2011

Academic Editor: Jianan Qu

Copyright © 2011 Jingjing Sun and Huikai Xie. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Cancer Society, Cancer Facts and Figures 2010, American Cancer Society, Atlanta, Ga, USA, 2010.
  2. D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991. View at Scopus
  3. C. A. Puliafito, M. R. Hee, C. P. Lin et al., “Imaging of macular diseases with optical coherence tomography,” Ophthalmology, vol. 102, no. 2, pp. 217–229, 1995. View at Scopus
  4. J. S. Schuman, M. R. Hee, A. V. Arya et al., “Optical coherence tomography: a new tool for glaucoma diagnosis,” Current Opinion in Ophthalmology, vol. 6, no. 2, pp. 89–95, 1995. View at Scopus
  5. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nature Biotechnology, vol. 21, no. 11, pp. 1361–1367, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Optics Letters, vol. 17, pp. 151–153, 1992.
  7. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Research and Technology, vol. 7, no. 1, pp. 1–9, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. De Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” Journal of Biomedical Optics, vol. 6, no. 4, pp. 474–479, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. De Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns, vol. 30, no. 6, pp. 511–517, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. M. V. Sivak, K. Kobayashi, J. A. Izatt et al., “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointestinal Endoscopy, vol. 51, no. 4, pp. 474–479, 2000. View at Scopus
  11. S. Jackle, N. Gladkova, F. Feldchtein et al., “In vivo endoscopic optical coherence tomography of esophagitis, Barrett's esophagus, and adenocarcinoma of the esophagus,” Endoscopy, vol. 32, no. 10, pp. 750–755, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. X. D. Li, S. A. Boppart, J. Van Dam et al., “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett's esophagus,” Endoscopy, vol. 32, no. 12, pp. 921–930, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. M. Poneros, S. Brand, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Diagnosis of specialized intestinal metaplasia by optical coherence tomography,” Gastroenterology, vol. 120, no. 1, pp. 7–12, 2001. View at Scopus
  14. G. J. Tearney, M. E. Brezinski, B. E. Bouma et al., “In vivo endoscopic optical biopsy with optical coherence tomography,” Science, vol. 276, no. 5321, pp. 2037–2039, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Optics Letters, vol. 31, no. 9, pp. 1265–1267, 2006. View at Publisher · View at Google Scholar
  16. T. Wu, Z. Ding, K. Wang, M. Chen, and C. Wang, “Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography,” Optics Express, vol. 17, no. 16, pp. 13819–13829, 2009. View at Publisher · View at Google Scholar
  17. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov et al., “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Optics Express, vol. 1, no. 13, pp. 432–440, 1997.
  18. Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. F. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Optics Letters, vol. 30, no. 1, pp. 53–55, 2005. View at Publisher · View at Google Scholar
  19. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Optics Letters, vol. 29, no. 15, pp. 1763–1765, 2004. View at Publisher · View at Google Scholar
  20. H. L. Fu, Y. Leng, M. J. Cobb, K. Hsu, J. H. Hwang, and X. Li, “Flexible miniature compound lens design for high-resolution optical coherence tomography balloon imaging catheter,” Journal of Biomedical Optics, vol. 13, no. 6, Article ID 060502, 2008. View at Publisher · View at Google Scholar · View at PubMed
  21. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Optics Letters, vol. 30, no. 14, pp. 1803–1805, 2005.
  22. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Optics Letters, vol. 22, no. 21, pp. 1618–1620, 1997. View at Scopus
  23. J. M. Bustjllo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1552–1573, 1998. View at Scopus
  24. G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1536–1551, 1998. View at Scopus
  25. Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Optics Letters, vol. 26, no. 24, pp. 1966–1968, 2001. View at Scopus
  26. K. E. Petersen, “Silicon torsional scanning mirror,” IBM Journal of Research and Development, vol. 24, no. 5, pp. 631–637, 1980. View at Scopus
  27. L. Fan and M. C. Wu, “Two-dimensional optical scanner with large angular rotation realized by self-assembled micro-elevator,” in Proceedings of the IEEE/LEOS Summer Topical Meeting, pp. 107–108, July 1998.
  28. G. D. J. Su, H. Toshiyoshi, and M. C. Wu, “Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors,” IEEE Photonics Technology Letters, vol. 13, no. 6, pp. 606–608, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. D. S. Greywall, C. S. Pai, S. H. Oh et al., “Monolithic fringe-field-activated crystalline silicon tilting-mirror devices,” Journal of Microelectromechanical Systems, vol. 12, no. 5, pp. 702–707, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. D. S. Greywall, P. A. Busch, F. Pardo, D. W. Carr, G. Bogart, and H. T. Soh, “Crystalline silicon tilting mirrors for optical cross-connect switches,” Journal of Microelectromechanical Systems, vol. 12, no. 5, pp. 708–712, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Hao, B. Wingfield, M. Whitley, J. Brooks, and J. A. Hammer, “A design methodology for a bulk-micromachined two-dimensional electrostatic torsion micromirror,” Journal of Microelectromechanical Systems, vol. 12, no. 5, pp. 692–701, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. J. C. Chiou and Y. C. Lin, “A multiple electrostatic electrodes torsion micromirror device with linear stepping angle effect,” Journal of Microelectromechanical Systems, vol. 12, no. 6, pp. 913–920, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. R. Dokmeci, A. Pareek, S. Bakshi et al., “Two-axis single-crystal silicon micromirror arrays,” Journal of Microelectromechanical Systems, vol. 13, no. 6, pp. 1006–1017, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Joudrey, G. G. Adams, and N. E. McGruer, “Design, modeling, fabrication and testing of a high aspect ratio electrostatic torsional MEMS micromirror,” Journal of Micromechanics and Microengineering, vol. 16, no. 10, pp. 2147–2156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. R. A. Conant, J. T. Nee, K. Y. Lau, and R. S. Muller, “A flat high-frequency scanning micromirror,” in Proceedings of the Hilton Head Solid-State Sensor and Actuator Workshop, pp. 6–9, 2000.
  36. H. Schenk, P. Dun, D. Kunze, H. Laher, and H. Kiick, “An electrostatically excited 2D micro-scanning-mirror with an in-plane configuration of the driving electrodes,” in Proceedings of the 13th IEEE International Conference on Micro Electro Mechanical Systems (MEMS '00), Miyazaki, Japan, January 2000.
  37. W. Piyawattanametha, P. R. Patterson, D. Hah, H. Toshiyoshi, and M. C. Wu, “Surface- and bulk-micromachined two-dimensional scanner driven by angular vertical comb actuators,” Journal of Microelectromechanical Systems, vol. 14, no. 6, pp. 1329–1338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. V. Milanović, G. A. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 10, no. 3, pp. 462–471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Xie, Y. Pan, and G. K. Fedder, “A CMOS-MEMS mirror with curled-hinge comb drives,” Journal of Microelectromechanical Systems, vol. 12, no. 4, pp. 450–457, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. P. R. Patterson, D. Hah, H. Nguyen, H. Toshiyoshi, R. M. Chao, and M. C. Wu, “A scanning micromirror with angular comb drive actuation,” in Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS '02), pp. 544–547, Las Vegas, Nev, USA, January 2002.
  41. W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Applied Physics Letters, vol. 88, no. 16, Article ID 163901, 3 pages, 2006. View at Publisher · View at Google Scholar
  42. D. T. McCormick, W. Jung, Y. C. Ahn, Z. Chen, and N. C. Tien, “A three dimensional real-time MEMS based optical biopsy system for in-vivo clinical imaging,” in Proceedings of the 4th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS '07), pp. 203–208, June 2007. View at Publisher · View at Google Scholar
  43. A. D. Aguirre, P. R. Herz, Y. Chen et al., “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En Face imaging,” Optics Express, vol. 15, no. 5, pp. 2445–2453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. R. A. Miller and Y. C. Tai, “Micromachined electromagnetic scanning mirrors,” Optical Engineering, vol. 36, no. 5, pp. 1399–1407, 1997. View at Scopus
  45. A. D. Yalcinkaya, H. Urey, and S. Holmstrom, “NiFe plated biaxial magnetostatic MEMS scanner,” in Proceedings of the 14th IEEE International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers '07), pp. 1517–1520, Lyon, France, June 2007. View at Publisher · View at Google Scholar
  46. J. W. Judy and R. S. Muller, “Magnetically actuated, addressable microstructures,” Journal of Microelectromechanical Systems, vol. 6, no. 3, pp. 249–255, 1997. View at Scopus
  47. I. J. Cho, K. S. Yun, H. K. Lee, J. B. Yoon, and E. Yoon, “A low-voltage two-axis electromagnetically actuated micromirror with bulk silicon mirror plates and torsion bars,” in Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS '02), pp. 540–543, Las Vegas, Nev, USA, January 2002.
  48. J. J. Bernstein, W. P. Taylor, J. D. Brazzle et al., “Electromagnetically actuated mirror arrays for use in 3-D optical switching applications,” Journal of Microelectromechanical Systems, vol. 13, no. 3, pp. 526–535, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. SI. H. Ahn and Y. K. Kim, “Silicon scanning mirror of two DOF with compensation current routing,” Journal of Micromechanics and Microengineering, vol. 14, no. 11, pp. 1455–1461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. H. A. Yang, T. L. Tang, S. T. Lee, and W. Fang, “A novel coilless scanning mirror using Eddy current Lorentz force and magnetostatic force,” Journal of Microelectromechanical Systems, vol. 16, no. 3, pp. 511–520, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. K. H. Kim, B. H. Park, G. N. Maguluri et al., “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Optics Express, vol. 15, no. 26, pp. 18130–18140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Watanabe, Y. Abe, S. Iwamatsu, S. Kobayashi, Y. Takahashi, and T. Sato, “Electromagnetically driven 2-axis optical beam steering MEMS mirror and its dependence of actuation on magnetic field,” IEEJ Transactions on Sensors and Micromachines, vol. 130, no. 4, pp. 107–112, 2010.
  53. T. Kawabata, M. Ikeda, H. Goto, M. Matsumoto, and T. Yada, “2-dimensional micro scanner integrated with PZT thin film actuator,” in Proceedings of the International Conference on Solid-State Sensors and Actuators (Transducers '97), pp. 339–342, Chicago,Ill, USA, June 1997.
  54. H.-J. Nam, Y.-S. Kim, S.-M. Cho, Y. Yee, and J.-U. Bu, “Low voltage PZT actuated tilting micromirror with hinge structure,” in Proceedings of the IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, August 2002.
  55. N. Kikuchi, Y. Haga, M. Maeda, W. Makishi, and M. Esashi, “Piezoelectric 2-D micro scanner for minimally invasive therapy fabricated using femtosecond laser ablation,” in Proceedings of the 12th International Conference on Solid State Sensors, Actuators and Microsystems (Transducersv '03), Boston, Mass, USA, June 2003.
  56. Y. Yee, J. U. Bu, M. Ha, et al., “Fabrication and characterization of a PZT actuated micromirror with two-axis rotational motion for free space optics,” in Proceedings of the 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS '01), Interlaken, Switzerland, January 2001.
  57. J. Tsaur, L. Zhang, R. Maeda, and S. Matsumoto, “2D micro scanner actuated by sol-gel derived double layered PZT,” in Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS '02), pp. 548–551, Las Vegas, Nev, USA, January 2002.
  58. J. G. Smits, K. Fujimoto, and V. F. Kleptsyn, “Microelectromechanical flexure PZT actuated optical scanner: static and resonance behavior,” Journal of Micromechanics and Microengineering, vol. 15, no. 6, pp. 1285–1293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscopic optical coherence tomography,” Journal of Micromechanics and Microengineering, vol. 19, no. 9, Article ID 095012, 2009. View at Publisher · View at Google Scholar
  60. R. A. Buser, N. F. de Rooij, H. Tischhauser, A. Dommann, and G. Staufert, “Biaxial scanning mirror activated by bimorph structures for medical applications,” Sensors and Actuators A, vol. 31, no. 1–3, pp. 29–34, 1992. View at Scopus
  61. J. Bühler, J. Funk, O. Paul, F. P. Steiner, and H. Baltes, “Thermally actuated CMOS micromirrors,” Sensors and Actuators A, vol. 47, no. 1–3, pp. 572–575, 1995. View at Scopus
  62. M. E. Motamedi, S. Park, A. Wang et al., “Development of micro-electro-mechanical optical scanner,” Optical Engineering, vol. 36, no. 5, pp. 1346–1353, 1997. View at Scopus
  63. M. Ataka, A. Omodaka, N. Takeshima, and H. Fujita, “Fabrication and operation of polyimide bimorph actuators for a ciliary motion system,” Journal of Microelectromechanical Systems, vol. 2, no. 4, pp. 146–150, 1993. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Lin, C.-J. Kim, S. Konishi, and H. Fujita, “Design, fabrication, and testing of A C shape actuator,” in Proceedings of the 8th International Conference on Solid-State Sensors and Actuators (Transducers '95 and Eurosensors), Stockholm, Sweden, June 1995.
  65. S. Schweizer, S. Calmes, M. Laudon, and PH. Renaud, “Thermally actuated optical microscanner with large angle and low consumption,” Sensors and Actuators A, vol. 76, no. 1–3, pp. 470–477, 1999. View at Publisher · View at Google Scholar · View at Scopus
  66. Q. Liu and Q. A. Huang, “Micro-electro-mechanical digital-to-analog converter based on a novel bimorph thermal actuator,” in Proceedings of the 1st IEEE International Conference on Sensors, pp. 1036–1041, Orlando, Fla, USA, June 2002.
  67. M. Sinclair, “A high frequency resonant scanner using thermal actuator,” in Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS '02), Las Vegas, Nev, USA, January 2002.
  68. A. Jain, A. Kopa, Y. Pan, G. K. Feeder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 10, no. 3, pp. 636–642, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Xie, Y. Pan, and G. K. Fedder, “Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror,” Sensors and Actuators A, vol. 103, no. 1-2, pp. 237–241, 2003. View at Publisher · View at Google Scholar
  70. T. Xie, H. Xie, G. K. Fedder, and Y. Pan, “Endoscopic optical coherence tomography with new MEMS mirror,” Electronics Letters, vol. 39, no. 21, pp. 1535–1536, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Xu, J. Singh, C. S. Premachandran et al., “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” Journal of Micromechanics and Microengineering, vol. 18, no. 12, Article ID 125005, 2008. View at Publisher · View at Google Scholar
  72. J. Singh, J. H. S. Teo, Y. Xu et al., “A two axes scanning SOI MEMS micromirror for endoscopic bioimaging,” Journal of Micromechanics and Microengineering, vol. 18, no. 2, Article ID 025001, 2008. View at Publisher · View at Google Scholar
  73. X. J. Mu, G. Y. Zhou, H. H. Feng, et al., “A 3mm endoscopic probe with integrated MEMS micromirror for optical coherence tomography bioimaging, Procedia Engineering,” in Proceedings of the 24th Eurosensor Conference, vol. 5, pp. 681–684, 2010.
  74. M. Wang, Y. Xu, C. S. Prem, et al., “Microfabricated endoscopic probe integrated MEMS micromirror for optical coherence tomography bioimaging,” in Proceedings of the IEEE Annual International Conference on Engineering in Medicine and Biology Society (EMBC '10), pp. 57–60, August-September 2010.
  75. J. Sun, S. Guo, L. Wu et al., “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Optics Express, vol. 18, no. 12, pp. 12065–12075, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. H. Xie, J. Sun, and L. Wu, “Optical micro-endoscopes for 3D in-vivo imaging,” in Proceedings of the Electrothermal Micromirrors and a Flexible Printed Circuit Board Permit Fast, Small Optical Coherence Tomography of Internal Organs, SPIE Newsroom, February 2010. View at Publisher · View at Google Scholar
  77. L. Liu, L. Wu, J. Sun, E. Lin, and H. Xie, “Miniature endoscopic optical coherence tomography probe employing a two-axis microelectromechanical scanning mirror with through-silicon vias,” Journal of Biomedical Optics, vol. 16, no. 2, 2011. View at Publisher · View at Google Scholar · View at PubMed