About this Journal Submit a Manuscript Table of Contents
International Journal of Optics
Volume 2012 (2012), Article ID 120731, 6 pages
http://dx.doi.org/10.1155/2012/120731
Research Article

Anomalous Propagation in Low Index Contrast Metamaterials: Assessment of the Beam Collimation Condition

1Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, USA
2Institute for Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, NJ 08854, USA

Received 1 June 2012; Accepted 10 August 2012

Academic Editor: Georgios Veronis

Copyright © 2012 Jun Tan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science, vol. 305, no. 5685, pp. 788–792, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. V. M. Shalaev, W. Cai, U. K. Chettiar et al., “Negative index of refraction in optical metamaterials,” Optics Letters, vol. 30, no. 24, pp. 3356–3358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Physical Review Letters, vol. 95, no. 13, Article ID 137404, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science, vol. 306, no. 5700, pp. 1351–1353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Schurig, J. J. Mock, B. J. Justice et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science, vol. 316, no. 5823, pp. 430–432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science, vol. 317, no. 5845, pp. 1698–1702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Physical Review Letters, vol. 99, no. 10, Article ID 107401, 4 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Valentine, S. Zhang, T. Zentgraf et al., “Three-dimensional optical metamaterial with a negative refractive index,” Nature, vol. 455, no. 7211, pp. 376–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. H. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 14, no. 6, pp. 1462–1472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Zhao, X. Huang, and Z. Lu, “Super Talbot effect in indefinite metamaterial,” Optics Express, vol. 19, no. 16, pp. 15297–15303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. X. Chen, P. Wang, C. C. Chen, Y. H. Lu, H. Ming, and Q. W. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Optics Express, vol. 19, no. 7, pp. 5970–5978, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. T. Chen, “Polymer-based photonic integrated circuits,” Optics and Laser Technology, vol. 25, no. 6, pp. 347–365, 1993. View at Scopus
  14. H. Kosaka, T. Kawashima, A. Tomita et al., “Superprism phenomena in photonic crystals,” Physical Review B, vol. 58, no. 16, pp. 10096–10099, 1998. View at Scopus
  15. T. Baba and M. Nakamura, “Photonic crystal light deflection devices using the superprism effect,” IEEE Journal of Quantum Electronics, vol. 38, no. 7, pp. 909–914, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Momeni, J. Huang, M. Soltani et al., “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Optics Express, vol. 14, no. 6, pp. 2413–2422, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. L. V. Azaroff, R. Kaplow, N. Kato, R. J. Weiss, A. J. C. Wilson, and R. A. Young, X-Ray Diffraction, McGraw-Hill, New York, NY, USA, 1974.
  18. W. Jiang and R. T. Chen, “Symmetry-induced singularities of the dispersion surface curvature and high sensitivities of a photonic crystal,” Physical Review B, vol. 77, no. 7, Article ID 075104, 8 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus