About this Journal Submit a Manuscript Table of Contents
International Journal of Optics
Volume 2012 (2012), Article ID 258013, 12 pages
http://dx.doi.org/10.1155/2012/258013
Review Article

Subwavelength Plasmonic Waveguides and Plasmonic Materials

Microsystems Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA

Received 29 March 2012; Accepted 8 June 2012

Academic Editor: Xiaoyue Huang

Copyright © 2012 Ruoxi Yang and Zhaolin Lu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. N. Economou, “Surface plasmons in thin films,” Physical Review, vol. 182, no. 2, pp. 539–554, 1969. View at Publisher · View at Google Scholar · View at Scopus
  2. R. H. Ritchie, “Surface plasmons in solids,” Surface Science, vol. 34, no. 1, pp. 1–19, 1973. View at Scopus
  3. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Optics Express, vol. 19, no. 22, pp. 22029–22106, 2011.
  4. K. S. Kim, “On the evolution of PON-based FTTH solutions,” Information Sciences, vol. 149, no. 1–3, pp. 21–30, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Rothschild, “A roadmap for optical lithography,” Optics and Photonics News, vol. 21, no. 6, pp. 26–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Eid, A. Fehr, J. Gray et al., “Real-time DNA sequencing from single polymerase molecules,” Science, vol. 323, no. 5910, pp. 133–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. A. Challener, C. Peng, A. V. Itagi et al., “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nature Photonics, vol. 3, no. 4, pp. 220–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics, Springer, Dordrecht, The Netherlands, 2007.
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelenght hole arrays,” Nature, vol. 391, no. 6668, pp. 667–669, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, New York, NY, USA, 1989.
  11. B. E. A. Salen and M. C. Teich, Fundamentals of Photonics, Wiley-Interscience, Hoboken, NJ, USA, 2nd edition, 2007.
  12. M. A. Ordal, R. J. Bell, J. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied Optics, vol. 24, no. 24, pp. 4493–4499, 1985.
  13. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, Orlando, Fla, USA, 1985.
  14. J. D. Joannopoulos, S. G. Johnson, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, New Jersey, NJ, USA, 2008.
  15. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley, 2006.
  16. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, NY, USA, 2007.
  17. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Physical Review B, vol. 73, no. 15, Article ID 153405, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Physical Review B, vol. 73, no. 3, Article ID 035407, 9 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature, vol. 440, no. 7083, pp. 508–511, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Optics Letters, vol. 30, no. 24, pp. 3359–3361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Feigenbaum and M. Orenstein, “Modeling of complementary (Void) plasmon waveguiding,” Journal of Lightwave Technology, vol. 25, no. 9, pp. 2547–2562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Yang, M. A. G. Abushagur, and Z. Lu, “Efficiently squeezing near infrared light into a 21nm-by-24nm nanospot,” Optics Express, vol. 16, no. 24, pp. 20142–20148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Applied Physics Letters, vol. 87, no. 13, Article ID 131102, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Physical Review B, vol. 79, no. 3, Article ID 035120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Charbonneau, C. Scales, I. Breukelaar et al., “Passive integrated optics elements based on long-range surface plasmon polaritons,” Journal of Lightwave Technology, vol. 24, no. 1, pp. 477–494, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Applied Physics Letters, vol. 85, no. 24, pp. 5833–5835, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Letters, vol. 6, no. 9, pp. 1928–1932, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Optics Letters, vol. 31, no. 14, pp. 2133–2135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-si field effect plasmonic modulator,” Nano Letters, vol. 9, no. 2, pp. 897–902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Letters, vol. 9, no. 12, pp. 4403–4411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science, vol. 299, no. 5607, pp. 682–686, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Optics Express, vol. 12, no. 16, pp. 3629–3651, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Thio, “A bright future for subwavelength light sources,” American Scientist, vol. 94, no. 1, p. 40, 2006.
  34. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Optics Express, vol. 16, no. 12, pp. 9222–9238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science, vol. 317, no. 5840, pp. 927–929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Foundations of the composite diffracted evanescent wave model,” Nature Physics, vol. 2, no. 790, pp. 262–267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Chen, J. T. Robinson, and M. Lipson, “Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface,” Optics Express, vol. 14, no. 26, pp. 12629–12636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Physical Review B, vol. 77, no. 11, Article ID 115411, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Optics Express, vol. 15, no. 3, pp. 1211–1221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic couplers and splitters,” Optics Express, vol. 17, no. 21, pp. 19033–19040, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. C. A. Balanis, Antenna Theory: Analysis and Design, Wiley, New Jersey, NJ, USA, 2005.
  42. A. Sommerfeld, “Propagation of waves in wireless telegraphy,” Annals of Physics, vol. 81, pp. 1367–1153, 1926.
  43. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science, vol. 305, no. 5685, pp. 847–848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Physical Review Letters, vol. 97, no. 17, Article ID 176805, 4 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Optics Express, vol. 18, no. 2, pp. 754–764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Optics Express, vol. 18, no. 20, pp. 21498–21503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. D. J. Bergman, “The dielectric constant of a composite material-a problem in classical physics,” Physics Reports, vol. 43, no. 9, pp. 377–407, 1978. View at Scopus
  48. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Physical Review B, vol. 74, no. 11, Article ID 115116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Physical Review B, vol. 72, no. 19, Article ID 193101, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, “Plasmonic nanolayer composites: coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation,” Journal of Nanomaterials, vol. 2007, Article ID 79469, 8 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Yang, X. Huang, and Z. Lu, “Arbitrary super surface modes bounded by multilayered metametal,” Micromachines, vol. 3, no. 1, pp. 45–54, 2012.
  52. D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, 2004.
  53. MicroChem Corp, March 2012, http://www.microchem.com.
  54. Photolithography Resist Processes and Capabilities (CNF), March 2012, http://www.cnf.cornell.edu/cnf_process_photo_resists.html.
  55. R. A. Soref, S.-Y. Cho, W. Buchwald, and R. E. Peale, “Silicon plasmonic waveguides,” in Silicon Photonics for Telecommunications and Biomedical Applications, B. Jalali and S. Fathpour, Eds., Taylor & Francis, London, UK, 2010.
  56. “PVD 75 Sputter Deposition from Kurt J. Lesker by CNF,” March 2012, http://www.cnf.cornell.edu/cnf5_tool.taf?_function=detail&eq_id=156.
  57. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photonics Reviews, vol. 4, no. 6, pp. 795–808, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. D. R. Andersen, “Graphene-based long-wave infrared TM surface plasmon modulator,” Journal of the Optical Society of America B, vol. 27, no. 4, pp. 818–823, 2010. View at Scopus
  59. F. H. L. Koppens, D. E. Chang, and F. J. Garciía de Abajo, “Graphene plasmonics: a platform for strong Light-Matter interactions,” Nano Letters, vol. 11, no. 8, pp. 3370–3377, 2011.
  60. J. T. Kim and S.-Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Optics Express, vol. 19, no. 24, pp. 24557–24562, 2011.
  61. X. Li, Y. Zhu, W. Cai et al., “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Letters, vol. 9, no. 12, pp. 4359–4363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Reina, X. Jia, J. Ho et al., “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Letters, vol. 9, no. 1, pp. 30–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. A. N. Sidorov, M. M. Yazdanpanah, R. Jalilian, P. J. Ouseph, R. W. Cohn, and G. U. Sumanasekera, “Electrostatic deposition of graphene,” Nanotechnology, vol. 18, no. 13, Article ID 135301, 2007. View at Publisher · View at Google Scholar · View at Scopus