About this Journal Submit a Manuscript Table of Contents
International Journal of Optics
Volume 2012 (2012), Article ID 505023, 16 pages
http://dx.doi.org/10.1155/2012/505023
Review Article

Deep Level Saturation Spectroscopy

Semiconductors Physics Department Institute of Applied Research, Vilnius University, 10222 Vilnius, Lithuania

Received 31 October 2011; Revised 14 December 2011; Accepted 23 December 2011

Academic Editor: Randy A. Bartels

Copyright © 2012 Vladimir Gavryushin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. V. Lang, “Deep-level transient spectroscopy: a new method to characterize traps in semiconductors,” Journal of Applied Physics, vol. 45, no. 7, pp. 3023–3032, 1974. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Chantre, G. Vincent, and D. Bois, “Deep-level optical spectroscopy in GaAs,” Physical Review B, vol. 23, no. 10, pp. 5335–5359, 1981. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Blood and J. Orton, The Electrical Characterisation of Semiconductors: Majority Carriers and Electron State, Academic Press, London, UK, 1992.
  4. L. Dobaczewski, P. Kaczor, I. Hawkins, and A. Peaker, “Laplace transform deep-level transient spectroscopic studies of defects in semiconductors,” Journal of Applied Physics, vol. 76, no. 1, pp. 194–198, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Dobaczewski, A. R. Peaker, and K. Bonde Nielsen, “Laplace-transform deep-level spectroscopy: the technique and its applications to the study of point defects in semiconductors,” Journal of Applied Physics, vol. 96, no. 9, pp. 4689–4728, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Fröhlich, “2-photonspektroskopie in festkörpern,” Festkörperprobleme, vol. 10, p. 227, 1970.
  7. D. Fröhlich, “Aspects of nonlinear spectroscopy,” Festkörperprobleme, vol. 21, p. 363, 1981.
  8. V. I. Bredikhin, M. D. Galanin, and V. N. Genkin, “Two-photon absorption and spectroscopy,” Uspekhi Fizicheskikh Nauk, vol. 110, no. 3, 1973, Soviet Physics Uspekhi, vol. 16, no. 3, pp. 299–318, 1973.
  9. R. Baltramiejūnas, J. Vaitkus, J. Viščakas, et al., “Spectral and polarizational investigations of two-photon absorption in semiconductors of group A2B6,” Izvestiya Akademii Nauk SSSR, vol. 46, no. 8, pp. 1442–1451, 1982, Bulletin of the Russian Academy of Sciences, vol. 46, pp. 1–9, 1982.
  10. A. Kazlauskas, V. Gavryushin, G. Račiukaitis, and O. Makienko, “Stoichiometry of CdS crystals and their optical and lasing properties,” Journal of Crystal Growth, vol. 146, no. 1–4, pp. 59–64, 1995. View at Scopus
  11. R. Baltramiejunas, R. Baubinas, J. Vaitkus, V. Gavryushin, and G. Raciukaitis, “Investigations of the deep levels in single crystals of ZnSe by method of nonlinear absorption spectroscopy,” Soviet Physics, Solid State, vol. 27, pp. 227–231, 1985, Fizika Tverdogo Tela, vol. 27, pp. 371–378, 1985.
  12. R. Baltramiejūnas, J. Vaitkus, and V. Gavryushin, “Light absorption by nonequilibrium, two-photon-generated, free and localized carriers in ZnTe single crystals,” Soviet Physics—JETP, vol. 60, pp. 43–48, 1984, Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, vol. 87, pp. 74–83, 1984.
  13. R. Baltramiejūnas, V. Gavryushin, G. Račiukaitis, V. Ryzhikov, A. Kazlauskas, and V. Kubertavičius, “Spectroscopy of deep centers in ZnSe: Te single crystals based on laser modulation of two-step absorption,” Soviet Physics Technology Semiconductor, vol. 22, pp. 738–743, 1988, Fizika i Tekhnika Poluprovodnikov, vol. 22, pp. 1163–1170, 1988.
  14. V. Gavryushin, “Nonlinear spectroscopy of intrinsic and local defect states in semiconductors,” in Laser Application in Atomic, Molecular and Nuclear Physics, V. Letokhov, Ed., pp. 303–321, World Scientific Publishing, Singapore, 1989.
  15. V. Gavryushin, Habil. Dr. dissert., Vilnius , VU, 1990, http://www.pfk.ff.vu.lt/vg/bibliogr.html.
  16. Y. Mozol, I. Packun, E. Salkov, and I. Fekeshgazi, “Two-photon and two-step transitions in the wide-band semiconductors CdP2, ZnP2, and ZnSe,” Bulletin of the Academy of Sciences, vol. 45, p. 1092, 1981.
  17. Y. Mozol, I. Packun, E. Salkov, and L. Marcenyuk, “Nonlinear absorption spectra of Cu doped ZnSe single crystals,” Soviet Semiconductor Physics and Technology, vol. 17, p. 1861, 1983.
  18. V. Gavryushin, “On the possibility of the direct study of local electron-phonon interaction in semiconductors,” JETP Letters, vol. 78, no. 5, pp. 309–313, 2003, Pis’ma v Zhurnal Éksperimental’no i Teoretichesko Fiziki, vol. 78, no. 5, pp. 757–762, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Gavryushin, “Direct characterization of electron-phonon interaction for deep levels in semiconductors,” Lithuanian Journal of Physics, vol. 42, no. 1, pp. 23–29, 2002.
  20. V. Lashkarev, A. Lubchenko, and M. Sheinkman, “Determination of the cross-section of emissive capture of electrons by r-centers in CdS,” Ukrainskii Fizichnii Zhurnal, vol. 13, pp. 1572–1575, 1968 (Russian).
  21. V. Lashkarev, A. Lubchenko, and M. Sheinkman, “Transient transition processes in photoconductors,” Kiev, p. 264, 1981 (Russian), Neravnovesnye procesy v fotoprovodnikach, Kiev: Naukova Dumka, 1981.
  22. R. Baltramiejūnas and V. Gavryushin, “Nonlinear spectroscopy of deep centers in zinc chalcogenais crystals,” Soviet Physics, vol. 25, pp. 1824–1831, 1989.
  23. R. Baltramiejunas and V. Gavryushin, “Two-photon and two-step spectroscopy of fundamental and impurity states in semiconductors,” in Laser—Physics and Applications, A. Spasov, Ed., pp. 724–742, World Scientific Publishing, Singapore, 1989.
  24. R. Baltramiejunas and V. Gavryushin, “Nonlinear spectro-scopy of deep levels in wide-gap II–VI semiconductors,” Journal of Crystal Growth, vol. 101, no. 1–4, pp. 699–704, 1990.
  25. R. Baltramiejunas, V. D. Ryzhikov, G. Račiukaitis, V. Gavryushin, D. Juodžbalis, and A. Kazlauskas, “Centers of radiative and nonradiative recombination in isoelectronically doped ZnSe : Te crystals,” Physica B, vol. 185, no. 1–4, pp. 245–249, 1993. View at Scopus
  26. R. Baltramiejūnas, J. Vaitkus, and V. Gavryushin, “Investi-gation of the processes of nonlinear absorption and their competition in semiconductors of groups A2B6 and A3B6,” Bulletin de l'Académie des Sciences, vol. 42, pp. 66–72, 1978, Izvestiya Akademii Nauk SSSR, vol. 42, pp. 2539–2546, 1978.
  27. V. Gavryushin, A. Kazlauskas, and G. Raciukaitis, “Defect-induced fundamental edge distortions in two-photon spectroscopy of semiconductors,” Advanced Materials for Optics and Electronics, vol. 3, no. 1–6, pp. 247–251, 1994. View at Scopus
  28. R. Baltramiejunas, V. Gavryushin, and G. Račiukaitis, “Giant nonlinear losses in GaSe crystals under double two-photon resonant conditions. Valence band structure from induced free carrier absorption,” Solid State Communications, vol. 80, no. 4, pp. 303–306, 1991. View at Scopus
  29. R. Baltramiejunas, V. Gavryushin, V. Kubertavičius, and G. Račiukaitis, “Nonlinear spectroscopy of DA-centers in CdS crystals. Stepwise exciton localization by isoelectronic defects,” Physica B, vol. 185, no. 1–4, pp. 336–341, 1993. View at Scopus
  30. R. Baltramiejunas, V. Gavryushin, V. Kubertavicius, and G. Raciukaitis, “Investigations of the peculiarities of nonlinear light absorption in ZnO single crystals,” Fizika Tverdogo Tela, vol. 25, pp. 3596–3605, 1983, Soviet Physics, Solid State, vol. 25, p. 2068, 1983.
  31. B. C. Cavenett, “Optically detected magnetic resonance of deep centers,” Advances in Physics, vol. 30, no. 4, pp. 475–538, 1981. View at Scopus
  32. K. M. Lee, K. P. O'Donnell, and G. D. Watkins, “Optically detected magnetic resonance of the zinc vacancy in ZnS,” Solid State Communications, vol. 41, no. 12, pp. 881–883, 1982. View at Scopus
  33. B. N. Murdin, B. C. Cavenett, C. R. Pidgeon, J. Simpson, I. Hauksson, and K. A. Prior, “Optically detected magnetic resonance of deep centers in molecular beam epitaxy ZnSe:N,” Applied Physics Letters, vol. 63, no. 17, pp. 2411–2413, 1993. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Patel, J. Davies, and J. Nicholls, “Direct optically detected magnetic resonance observation of a copper centre associated with the green emission in ZnSe,” Journal of Physics C, vol. 14, no. 35, pp. 5545–5557, 1981. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Gavryushin, A. Kadys, M. Sudzius, and K. Jarasiunas, “Effects of photo-quenching-buildup and saturation of the induced impurity grating in ZnSe : Cr crystals,” JETP Letters, vol. 83, no. 1, pp. 22–27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Gavryushin, G. Rachyukaitis, V. Kubertavichyus, A. Kazlauskas, and G. Puzonas, “Nonlinear-absorption spectroscopy and materials technology of crystals,” Journal of Applied Spectroscopy, vol. 51, pp. 989–998, 1990, Zhurnal Prikladnoi Spektroskopii, vol. 51, p. 503, 1989.
  37. V. Gavryushin, O. Makienko, E. Markov, A. Kazlauskas, G. Račiukaitis, and V. Teplitskii, “Effect of the growth conditions of CdS single crystals on the content of lattice point defects,” Inorganic Materials, vol. 28, pp. 22–26, 1992, Neorganicheskie Materialy, vol. 28, pp. 31–35, 1992.