About this Journal Submit a Manuscript Table of Contents
International Journal of Optics
Volume 2012 (2012), Article ID 603083, 7 pages
http://dx.doi.org/10.1155/2012/603083
Research Article

Tuning Metamaterials for Applications at DUV Wavelengths

Microsystems Engineering, Rochester Institute of Technology, 77 Lomb Memorial Drive, Rochester, NY 14623, USA

Received 9 April 2012; Accepted 23 July 2012

Academic Editor: Xiaoyue Huang

Copyright © 2012 Andrew Estroff and Bruce W. Smith. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philisophical Magazine, vol. 4, pp. 396–402, 1902.
  2. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (sommerfeld's waves),” Journal of the Optical Society of America, vol. 31, no. 3, pp. 213–222, 1941.
  3. A. Sommerfeld, “Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes,” Annalen der Physik, vol. 303, no. 2, pp. 233–290, 1899.
  4. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Physical Review, vol. 106, no. 5, pp. 874–881, 1957. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Bohm and D. Pines, “A collective description of electron interactions. i. magnetic interactions,” Physical Review, vol. 82, no. 5, pp. 625–634, 1951. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Pines and D. Bohm, “A collective description of electron interactions: ii. Collective vs individual particle aspects of the interactions,” Physical Review, vol. 85, no. 2, pp. 338–353, 1952. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Bohm and D. Pines, “A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas,” Physical Review, vol. 92, no. 3, pp. 609–625, 1953. View at Publisher · View at Google Scholar · View at Scopus
  8. C. T. Walker, “Who named the -oN's?” American Journal of Physics, vol. 38, p. 1380, 1970.
  9. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Zeitschrift Fur Naturforschung, vol. 23A, pp. 2135–2136, 1968.
  10. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik, vol. 216, no. 4, pp. 398–410, 1968. View at Publisher · View at Google Scholar · View at Scopus
  11. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics, vol. 131, Springer, 2007.
  12. J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, pp. 3966–3969, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of epsilon and mu,” Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509–514, 1968.
  14. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science, vol. 308, no. 5721, pp. 534–537, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. R. J. Blaikie and D. O. S. Melville, “Imaging through planar silver lenses in the optical near field,” Journal of Optics A, vol. 7, no. 2, pp. S176–S183, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Optics Express, vol. 13, no. 6, pp. 2127–2134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B, vol. 394, no. 2, pp. 197–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Guo and Q. Dong, “Coupled surface plasmon interference lithography based on a metal-bounded dielectric structure,” Journal of Applied Physics, vol. 108, no. 11, Article ID 113108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. V. Sreekanth and V. M. Murukeshan, “Large-area maskless surface plasmon interference for one- and two-dimensional periodic nanoscale feature patterning,” Journal of the Optical Society of America A, vol. 27, no. 1, pp. 95–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Passian, A. Wig, A. L. Lereu et al., “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy, vol. 100, no. 3-4, pp. 429–436, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, 2007.
  22. “RIT Nanolithograpy Research Labs > Optical Properties of Thin Films,” http://www.rit.edu/kgcoe/microsystems/lithography/thinfilms/thinfilms/thinfilms.html.
  23. A. Estroff, N. V. Lafferty, P. Xie, B. W. Smith, et al., “Metamaterials for enhancement of DUV lithography,” in Optical Microlithography XXIII, vol. 7640 of Proceedings of the SPIE, pp. 76402W–76402W-10, 2010. View at Publisher · View at Google Scholar
  24. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” Journal of Physics Condensed Matter, vol. 10, no. 22, pp. 4785–4809, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Physical Review Letters, vol. 76, no. 25, pp. 4773–4776, 1996. View at Scopus
  26. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science, vol. 305, no. 5685, pp. 847–848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. E. N. Economou, “Surface plasmons in thin films,” Physical Review, vol. 182, no. 2, pp. 539–554, 1969. View at Publisher · View at Google Scholar · View at Scopus
  28. K. R. Welford and J. R. Sambles, “Coupled surface plasmons in a symmetric system,” Journal of Modern Optics, vol. 35, no. 9, pp. 1467–1483, 1988. View at Scopus
  29. G. J. Kovacs and G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Physical Review B, vol. 16, no. 4, pp. 1297–1311, 1977. View at Publisher · View at Google Scholar · View at Scopus
  30. G. J. Kovacs and G. D. Scott, “Attenuated total reflection angular spectra of a system of alternating plasma-dielectric layers,” Applied Optics, vol. 17, no. 22, pp. 3627–3635, 1978. View at Scopus
  31. R. Yang, X. Huang, and Z. Lu, “Arbitrary super surface modes bounded by multilayered metametal,” Micromachines, vol. 3, no. 1, pp. 45–54, 2012. View at Publisher · View at Google Scholar
  32. H. A. Macleod, Thin-Film Optical Filters, CRC Press, 2001.