About this Journal Submit a Manuscript Table of Contents
International Journal of Optics
Volume 2012 (2012), Article ID 627018, 6 pages
http://dx.doi.org/10.1155/2012/627018
Research Article

Simultaneous Realization of Wavelength Conversion, 2R Regeneration, and All-Optical Multiple Logic Gates with OR, NOR, XOR, and XNOR Functions Based on Self-Polarization Rotation in a Single SOA: An Experimental Approach

Sys'com Lab, National Engineering School of Tunis (ENIT), B.P. 37, Le Belvedere, 1002 Tunis, Tunisia

Received 31 October 2011; Revised 29 January 2012; Accepted 30 January 2012

Academic Editor: Yu S. Kivshar

Copyright © 2012 Youssef Said and Houria Rezig. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Leuthold, B. Mikkelsen, G. Raybon et al., “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Optical and Quantum Electronics, vol. 33, no. 7-10, pp. 939–952, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Said and H. Rezig, “Semiconductor optical amplifier nonlinearities and their applications for next generation of optical networks,” in Advances in Optical Amplifiers, P. Urquhart, Ed., chapter 2, pp. 27–52, 2011, http://www.intechopen.com/articles/show/title/semiconductor-optical-amplifier-nonlinearities-and-their-applications-for-next-generation-of-optical.
  3. R. Randhawa, S. Singh, J. S. Sohal, and R. S. Kaler, “Wavelength converter using semiconductor optical amplifier Mach-Zehnder interferometer based on XPM at 40 Gb/s for future transport networks,” Fiber and Integrated Optics, vol. 28, no. 2, pp. 154–169, 2009. View at Publisher · View at Google Scholar
  4. M. Spyropoulou, N. Pleros, K. Vyrsokinos et al., “40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: theory and experiment,” Journal of Lightwave Technology, vol. 29, no. 10, pp. 1489–1499, 2011. View at Publisher · View at Google Scholar
  5. L. Bramerie, M. Gay, J. C. Simon et al., “A versatile optical spot-size converter desig,” in Proceedings of the European Conference on Optical Communications (ECOC '04), vol. We2.5.2, pp. 468–469, Stockholm, Sweden, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Dong, Z. Li, C. Lu, Y. Wang, and T. H. Cheng, “3R all-optical regeneration and wavelength conversion based on cross polarization modulation effect from a single semiconductor optical amplifier,” in Proceedings of the 16th IEEE LEOS Annual Meeting Conference Proceedings, pp. 403–404, October 2003. View at Scopus
  7. S. Philippe, A. L. Bradley, B. Kennedy, F. Surre, and P. Landais, “Experimental investigation of polarization effects in semiconductor optical amplifiers and implications for all-optical switching,” Journal of Lightwave Technology, vol. 26, no. 16, pp. 2977–2985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Dong, X. Zhang, J. Xu, and D. Huang, “40 Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier: experimental demonstration and theoretical analysis,” Optics Communications, vol. 281, no. 6, pp. 1710–1715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment,” Journal of Lightwave Technology, vol. 24, no. 9, pp. 3392–3399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Zhang, J. Wu, C. Feng, K. Xu, and J. Lin, “All-optical logic or gate exploiting nonlinear polarization rotation in an SOA and red-shifted sideband filtering,” IEEE Photonics Technology Letters, vol. 19, no. 1, pp. 33–35, 2007. View at Publisher · View at Google Scholar
  11. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” Journal of Lightwave Technology, vol. 14, no. 6, pp. 942–954, 1996. View at Scopus
  12. S. Fu, J. Dong, P. Shum, L. Zhang, X. Zhang, and D. Huang, “Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA,” Optics Express, vol. 14, no. 17, pp. 7587–7593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, “Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation,” IEEE Journal of Quantum Electronics, vol. 42, no. 3, Article ID 01597418, pp. 313–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Politi, D. Klonidis, and M. J. O'Mahony, “Dynamic behavior of wavelength converters based on FWM in SOAs,” IEEE Journal of Quantum Electronics, vol. 42, no. 2, pp. 108–125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Jansen, G. Khoe, H. de Waardt et al., “Optimizing the wavelength configuration for FWM-based demultiplexing in a SOA,” in Proceedings of the Optical Fiber Communication Conference (OFC '03), pp. 539–541, 2003. View at Scopus
  16. J. P. Turkiewiez, J. J. V. Olmos, A. M. J. Koonen, G. D. Khoe, and H. de Waardt, “All-optical 1310-to-1550 nm wavelength conversion including transmission over two fibre links,” in Proceedings of the IEEE/LEOS 10th Annual Symposium Benelux Chapter, pp. 189–192, Mons, Belgium, December 2005.
  17. M. Tariaki, A. Sharaiha, M. Guégan, F. F. L. Bentivegna, and M. Amaya, “All-optical inverted and non-inverted wavelength conversion based on cross polarization modulation in a semiconductor optical amplifier,” in Proceedings of the 3rd International Conference on Information and Communication Technologies: From Theory to Applications (IEEE-ICTTA '08), pp. 1–6, Damascus, Syria, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Optics Communications, vol. 265, no. 1, pp. 322–325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Hamie, A. Sharaiha, and M. Guegan, “Demonstration of an all-optical logic OR gate using gain saturation in an SOA,” Microwave and Optical Technology Letters, vol. 39, no. 1, pp. 39–42, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technology Letters, vol. 18, no. 8, pp. 917–919, 2006. View at Publisher · View at Google Scholar
  21. Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics Technology Letters, vol. 18, no. 12, pp. 1341–1343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Han, X. Teng, L. Hu, N. Hua, and H. Zhang, “All optical NOR and or gates using cross polarization modulation in a single SOA,” in Proceedings of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS '05), pp. 438–439, October 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Zhang, J. Wu, C. Feng, K. Xu, and J. Lin, “40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering,” Electronics Letters, vol. 42, no. 21, pp. 1243–1244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Liu, M. T. Hill, E. Tangdiongga et al., “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photonics Technology Letters, vol. 15, no. 1, pp. 90–92, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. B. F. Kennedy, S. Philippe, F. Surre, A. L. Bradley, and P. Landais, “Investigation of optimum wavelength converter based on nonlinear polarisation rotation in a bulk SOA,” IET Optoelectronics, vol. 1, no. 2, pp. 55–60, 2007. View at Publisher · View at Google Scholar · View at Scopus