About this Journal Submit a Manuscript Table of Contents
International Journal of Optics
Volume 2012 (2012), Article ID 879392, 6 pages
http://dx.doi.org/10.1155/2012/879392
Research Article

Deep Subwavelength Power Concentration-Based Hyperbolic Metamaterials

1Microsystems Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
2Department of Electrical and Microelectronic Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA

Received 31 May 2012; Revised 6 August 2012; Accepted 27 August 2012

Academic Editor: Xiaoyue Huang

Copyright © 2012 Amanpreet Kaur et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi, vol. 10, pp. 509–514, 1968.
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, pp. 3966–3969, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77–79, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell's law,” Physical Review Letters, vol. 90, no. 13, Article ID 137401, 4 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature Materials, vol. 7, no. 6, pp. 435–441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science, vol. 308, no. 5721, pp. 534–537, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Physical Review Letters, vol. 76, no. 25, pp. 4773–4776, 1996. View at Scopus
  8. A. Berrier, M. Mulot, M. Swillo et al., “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Physical Review Letters, vol. 93, no. 7, Article ID 073902, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Negative refraction without negative index in metallic photonic crystals,” Optics Express, vol. 11, no. 7, pp. 746–754, 2003. View at Scopus
  10. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, 7th edition, 1999.
  11. J. O. Dimmock, “Losses in left-handed materials,” Optics Express, vol. 11, no. 19, pp. 2397–2402, 2003. View at Scopus
  12. I. A. Larkin and M. I. Stockman, “Imperfect perfect lens,” Nano Letters, vol. 5, no. 2, pp. 339–343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Physical Review Letters, vol. 90, no. 7, Article ID 077405, 4 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” Journal of the Optical Society of America B, vol. 21, no. 5, pp. 1032–1043, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Cheng and R. Chen, “Large positive and negative lateral shifts from an anisotropic metamaterial slab backed by a metal,” Chinese Physics Letters, vol. 26, no. 1, Article ID 014101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Yan, L. Shen, L. Ran, and J. A. Kong, “Surface modes at the interfaces between isotropic media and indefinite media,” Journal of the Optical Society of America A, vol. 24, no. 2, pp. 530–535, 2007. View at Scopus
  17. L. Zhang, Q. Wang, Y. Zhao, W. Qiao, and J. Zhao, “Surface modes of the sandwhich structure containing indefinite metamaterials,” in Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT '10), pp. 1669–1672, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Applied Physics Letters, vol. 84, no. 13, pp. 2244–2246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media,” Journal of the Optical Society of America B, vol. 23, no. 3, pp. 498–505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Optics Express, vol. 14, no. 18, pp. 8247–8256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Physical Review B, vol. 74, no. 11, Article ID 115116, 8 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Optics Express, vol. 16, no. 20, pp. 15439–15448, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. B. Pendry, “Perfect cylindrical lenses,” Optics Express, vol. 11, no. 7, pp. 755–760, 2003. View at Scopus
  24. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Physical Review B, vol. 72, no. 19, Article ID 193101, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. P. A. Belov, R. Marqués, S. I. Maslovski et al., “Strong spatial dispersion in wire media in the very large wavelength limit,” Physical Review B, vol. 67, no. 11, Article ID 113103, 4 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Applied Physics Letters, vol. 89, no. 26, Article ID 261102, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus