About this Journal Submit a Manuscript Table of Contents
International Journal of Optics
Volume 2012 (2012), Article ID 916482, 9 pages
http://dx.doi.org/10.1155/2012/916482
Research Article

Plasmonic Band-Pass Microfilters for LWIR Absorption Spectroscopy

1Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401, USA
2Thin Film Technologies Division, ITN Energy Systems, Inc., 8130 Shaffer Parkway, Littleton, CO 80127, USA

Received 31 October 2011; Revised 13 January 2012; Accepted 13 January 2012

Academic Editor: K. S. Chiang

Copyright © 2012 J. M. Banks et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Gittins, W. Marinelli, and J. Jensen, “Remote characterization of chemical vapor plumes by LWIR imaging fabry-perot spectrometry,” in Proceedings of the 5th Joint Conference on Standoff Detection for Chemical and Biological Defense, pp. 4–28, Williamsburg, Va, USA, 2001.
  2. J. T. Daly, A. Bodkin, W. Schneller et al., “Tunable narrow-band filter for LWIR hyperspectral imaging,” in Proceedings of the Photodetectors: Materials and Devices V, Proceedings of SPIE, pp. 104–115, January 2000. View at Scopus
  3. R. Bhan, R. Saxena, C. Jalwania, and S. Lomash, “Uncooled infrared microbolometer arrays and their characterisation techniques,” Defence Science Journal, vol. 59, no. 6, pp. 580–589, 2009. View at Scopus
  4. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Beyond the blackbody radiation limit: high-sensitivity thermal detectors,” in Proceedings of the Infrared Technology and Applications XXXVI, vol. 7660 of Proceedings of SPIE, p. 766011, Orlando, Fla, USA, April 2010. View at Publisher · View at Google Scholar
  5. A. S. Weling and P. F. Henning, “Antenna-coupled microbolometers for multispectral infrared imaging,” in Proceedings of the Infrared Technology and Applications XXXII, vol. 6206 of Proceedings of SPIE, p. 62061F, April 2006. View at Scopus
  6. S. W. Han and D. P. Neikirk, “Design of infrared wavelength-selective microbolometers using planar multimode detectors,” in Proceedings of the Smart Sensors, Actuators, and MEMS II, Proceedings of SPIE, pp. 549–557, May 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. F. González, J. Porter, and G. Boreman, “Antenna-coupled infrared focal plane array,” Microwave and Optical Technology Letters, vol. 48, no. 1, pp. 165–166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Optics Letters, vol. 35, no. 22, pp. 3766–3768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Optics Letters, vol. 34, no. 19, pp. 3012–3014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Physical Review Letters, vol. 100, no. 20, Article ID 207402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Physical Review B, vol. 79, no. 4, Article ID 045131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Wang, B. Potter, and J. Talghader, “Coupled absorption filters for thermal detectors,” Optics Letters, vol. 31, no. 13, pp. 1945–1947, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Syllaios and P. Chahal, “Integrated spectroscopic microbolometer with microfilter arrays,” U.S. Patent No. 6,998,613, 2004.
  14. Z. Jaksic, R. Petrovic, D. Randjelovic et al., “Integrated multicolor detector utilizing 1-D photonic bandgap filter with wedge-shaped defect,” in Proceedings of the 1999 Design, Test, and Microfabrication of MEMS and MOEMS, Proceedings of SPIE, pp. 611–619, April 1999. View at Scopus
  15. Y. Wang, B. Potter, M. Sutton, R. Supino, and J. Talghader, “Step-wise tunable microbolometer long-wavelength infrared filter,” in 13th International Conference on Solid-State Sensors and Actuators and Microsystems, pp. 1006–1009, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Cheng, S. Paradis, T. Bui, and M. Almasri, “Design of dual-band uncooled infrared microbolometer,” IEEE Sensors Journal, vol. 11, no. 1, pp. 167–175, 2011. View at Publisher · View at Google Scholar
  17. R. P. Shea, A. S. Gawarikar, and J. J. Talghader, “Midwave thermal infrared detection using semiconductor selective absorption,” Optics Express, vol. 18, no. 22, pp. 22833–22841, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Applied Physics Letters, vol. 89, no. 15, Article ID 151116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. P. D. Flammer, I. C. Schick, R. T. Collins, and R. E. Hollingsworth, “Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films,” Optics Express, vol. 15, no. 13, pp. 7984–7993, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Ajmera, A. Syllaios, G. Tyber, M. Taylor, and R. Hollingsworth, “Amorphous silicon thin-films for uncooled infrared microbolometer sensors,” in Proceedings of the Infrared Technology and Applications XXXVI, vol. 7660 of Proceedings of SPIE, p. 766012, Orlando, Fla, USA, 2010. View at Publisher · View at Google Scholar
  21. C. M. Hanson, S. K. Ajmera, J. Brady, et al., “Small pixel a-Si/a-SiGe bolometer focal plane array technology at L-3 communications,” in Proceedings of the Infrared Technology and Applications XXXVI, vol. 7660 of Proceedings of SPIE, p. 76600R, Orlando, Fla, USA, 2010. View at Publisher · View at Google Scholar
  22. J. Jin, The Finite Element Method in Electromagnetics, Wiley, 2nd edition, 2002.
  23. E. Palik, Handbook of Optical Constants of Solids, Academic Press, 1985.
  24. M. Bass, G. Li, and E. V. Stryland, Handbook of Optics, vol. 4, McGraw-Hill, 3rd edition, 2009.
  25. A. D. Rakic, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Applied Optics, vol. 34, no. 22, pp. 4755–4767, 1995. View at Publisher · View at Google Scholar