About this Journal Submit a Manuscript Table of Contents
International Journal of Oceanography
Volume 2013 (2013), Article ID 678621, 9 pages
http://dx.doi.org/10.1155/2013/678621
Review Article

The Development of SONAR as a Tool in Marine Biological Research in the Twentieth Century

1National Museum of Natural History, Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, USA
2AGUAtech, Via delle Pianazze 74, 19136 La Spezia, Italy

Received 3 June 2013; Revised 16 September 2013; Accepted 25 September 2013

Academic Editor: Emilio Fernández

Copyright © 2013 John A. Fornshell and Alessandra Tesei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Urick, Principles of Underwater Sound, Peninsula Publishing, Los Altos Hills, Calif, USA, 3rd edition, 1983.
  2. A. D'Amico and R. Pittenger, “A brief history of active sonar,” Aquatic Mammals, vol. 35, no. 4, pp. 426–434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Klein, “Underwater sound and naval acoustical research and applications before 1939,” Journal of the Acoustic, vol. 43, no. 3, pp. 931–947, 1968.
  4. S. B. Nelson, Oceanographic Ships Fore and Aft, U. S. Government Printing Office, Washington, DC, USA, 1971.
  5. P. Portier, Sur l’application des on des Ultra-Sonores Aux Recherches D’Océanographie Biologique, vol. 91, C. R. Société Biologique, Paris, France, 1924.
  6. R. Rallier du Baty, “La pêche sur le banc de Terre-Neuve et autour del îles,” in Saint-Pierre et Miquelon Office Scientifique et Technique des Pêches Maritimes Mémoires, vol. 7, 1927.
  7. K. Kimura, “On the detection of fish-groups by an acoustic method,” Journal of the Imperial Fish Institute, vol. 24, pp. 41–45, 1929.
  8. J. A. Edgell, “False echoes in deep water,” Hydrographic Review, vol. 12, pp. 19–20, 1935.
  9. H. Wood and B. B. Parrish, “Echo-sounding experiments on fishing gear in action,” Journal du Conseil International Pour l'Exploration de la Mer, vol. 17, pp. 25–36, 1950.
  10. O. Sund, “Echo sounding in fishery research,” Nature, vol. 135, no. 3423, p. 953, 1935. View at Scopus
  11. S. Runnstrom, “A review of the Norwegian herring investigations in recent years,” JournaL du Conseil International Pour l' Exploration de la Mer, vol. 12, pp. 123–1143, 1937.
  12. S. Runnstrom, “Quantitative investigations on herring spawning and its yearly fluctuations at the west coast of Norway,” Report on Norwegian Fishery and Marine Investigations, vol. 6, p. 71, 1941.
  13. R. Balls, Fish on the Spot Line, Marconi International Marine Communications, London, UK, 1946.
  14. R. Balls, “Herring fishing with the echometer,” ConseiL InternationaL Pour L'Exploration De La Mer, vol. 15, pp. 193–206, 1948.
  15. X. Lurton, An Introduction to Underwater Acoustics, Praxis Publishing, Chichester, UK, 2002.
  16. R. L. Brownell Jr., D. P. Nowacek, and K. Ralls, “Hunting cetaceans with sound: a worldwide review,” Journal of Cetacean Research and Management, vol. 10, no. 1, pp. 81–88, 2008. View at Scopus
  17. R. A. Walker, “Some intense, low-frequency, underwater sounds of wide Geographic distribution, apparently of biological origin,” Journal of the Acoustical Society of America, vol. 35, no. 11, pp. 1816–1824, 1963.
  18. L. P. Solomon, Transparent Oceans: the Defeat of the Soviet Submarine Force, Pearl River Publishing, 2003.
  19. G. J. Gagnon and C. W. Clark, “The use of U.S. Navy IUSS passive sonar to monitor the movement of blue whales,” in Proceedings of the 10th Biennial Conference on the Biology of Marine Mammals, pp. 11–15, Galveston, Tex, USA, November 1993.
  20. M. A. McDonald, J. A. Hildebrand, and S. C. Webb, “Blue and fin whales observed on a seafloor array in the Northeast Pacific,” Journal of the Acoustical Society of America, vol. 98, no. 2, pp. 712–721, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. W. A. Watkins, M. A. Daher, G. M. Reppucci et al., “Seasonahty and distribution of whale calls in the North Pacific,” Oceanography, vol. 13, no. 1, pp. 62–67, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. C. W. Clark and P. J. Clapham, “Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring,” Proceedings of the Royal Society B, vol. 271, no. 1543, pp. 1051–1057, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. E. Moore, K. M. Stafford, M. E. Dahlheim et al., “Seasonal variation in reception of fin whale calls at five geographic areas in the north pacific,” Marine Mammal Science, vol. 14, no. 3, pp. 617–627, 1998. View at Scopus
  24. R. S. Payne and S. McVay, “Songs of humpback whales,” Science, vol. 173, no. 3997, pp. 585–597, 1971. View at Scopus
  25. R. A. Charif, P. J. Clapham, and C. W. Clark, “Acoustic detections of singing humpback whales in deep waters off the British Isles,” Marine Mammal Science, vol. 17, no. 4, pp. 751–768, 2001. View at Scopus
  26. T. F. Duda and A. D. Pierce, “History of environmental acoustics, 1960's to 2000's,” in Proceedings of the MTS/IEE Oceans, Quebec City, Canada, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Carron, “A Nato Saclantcen marine mammal risk mitigation programm (sound ocean and living marine resources),” in Proceedings of the European Cetacean Society's 17th Annual Conference, P. G. H. Evans and L. A. Miller, Eds., pp. 59–62, 2003.
  28. G. Pavan, C. Fossati, M. Manghi, and M. Priano, “Passive acoustic tools for the implementation of acoustic risk mitigation policies,” in Proceedings of the European Cetacean Society's 17th Annual Conference, P. G. H, Evans, and L. A. Miller, Eds., 2003.
  29. W. M. X. Zimmer, “Underwater acoustics and whales in the Mediterranean Sea,” Polarforschung, vol. 72, no. 2-3, pp. 115–118, 2002. View at Scopus
  30. P. Fortescue, S. O. Hole, R. M. Robichaud et al., “Marine mammals and active sonar: a paper prepared for the NATO Military Oceanography Group,” Tech. Rep., NURC publication, 2005.
  31. W. M. X. Zimmer, M. P. Johnson, P. T. Madsen, and P. L. Tyack, “Echolocation clicks of free-ranging Cuvier's beaked whales (Ziphius cavirostris),” Journal of the Acoustical Society of America, vol. 117, no. 6, pp. 3919–3927, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. M. Wiggins, M. A. McDonald, and J. A. Hildebrand, “Beaked whale and dolphin tracking using a multichannel autonomous acoustic recorder,” Journal of the Acoustical Society of America, vol. 131, no. 1, pp. 156–163, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. T. G. Leighton, S. D. Richards, and P. R. White, “Trapped within a 'wall of sound'. a possible mechanism for the bubble nets of humpback whales,” Acoustics Bulletin, vol. 29, no. 1, pp. 24–27, 2004. View at Scopus
  34. R. S. Diets, “Deep scattering layer in the Pacific and Antarctic oceans,” Journal of Marine Research, vol. 7, no. 3, pp. 430–442, 1948.
  35. S. A. Tont, “Deep scattering layers: patterns in the Pacific,” California Cooperative Oceanic Fisheries Investigations Reports 18, 1975.
  36. J. H. Stockhausen and A. Figoli, “An upward-looking bistatic research system for measuring deep scattering layers in the ocean,” SACLANTCEN Technical Report 225, 1973.
  37. E. G. Barham, “Deep scattering layer migration and composition: observations from a diving saucer,” Science, vol. 151, no. 3716, pp. 1399–1403, 1966. View at Scopus
  38. C. J. Robinson and J. Gómez-Gutiérrez, “Daily vertical migration of dense deep scattering layers related to the shelf-break area along the northwest coast of Baja California, Mexico,” Journal of Plankton Research, vol. 20, no. 9, pp. 1679–1697, 1998. View at Scopus
  39. J. B. Hersey and R. H. Backus, “New evidence that migrating gas bubbles, probably the swimbladders of fish, are largely responsible for scattering layers on the continental rise south of New England,” Deep Sea Research, vol. 1, no. 3, pp. 190–191, 1954. View at Scopus
  40. D. V. Holliday and R. E. Pieper, “Volume scattering strengths and zooplankton distributions at acoustic frequencies between 0. 5 and 3 MHz,” Journal of the Acoustical Society of America, vol. 67, no. 1, pp. 135–146, 1980. View at Scopus
  41. C. F. Greenlaw, “Backscattering spectra of preserved zooplankton,” Journal of the Acoustical Society of America, vol. 62, no. 1, pp. 44–52, 1977. View at Scopus
  42. C. F. Greenlaw and R. K. Johnson, “Physical and acoustical properties of zooplankton,” Journal of the Acoustical Society of America, vol. 72, no. 6, pp. 1706–1710, 1982. View at Scopus
  43. C. H. Green and P. H. Wiebe, “Bioacoustical oceanography: new tools for zooplankton research in the 1990s,” Oceanography, vol. 3, pp. 12–17, 1990.
  44. T. K. Stanton, P. H. Wiebe, C. D. Chu Dezhanbg et al., “On acoustic estimates of zooplankton biomass,” ICES Journal of Marine Science, vol. 51, no. 4, pp. 505–512, 1994. View at Publisher · View at Google Scholar · View at Scopus
  45. P. H. Wiebe, C. H. Greene, T. K. Stanton, and J. Burczynski, “Sound scattering by live zooplankton and micronekton: empirical studies with a dual-beam acoustical system,” Journal of the Acoustical Society of America, vol. 88, no. 5, pp. 2346–2360, 1990. View at Publisher · View at Google Scholar · View at Scopus
  46. R. F. Coombs and R. Barr, “Acoustic remote sensing of swimbladder orientation and species mix in the oreo population on the chatham rise,” Journal of the Acoustical Society of America, vol. 115, no. 4, pp. 1516–1524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Chu and T. K. Stanton, “Application of pulse compression techniques to broadband acoustic scattering by live individual zooplankton,” Journal of the Acoustical Society of America, vol. 104, no. 1, pp. 39–55, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. T. K. Stanton, D. B. Reeder, and J. M. Jech, “Inferring fish orientation from broadband-acoustic echoes,” ICES Journal of Marine Science, vol. 60, no. 3, pp. 524–531, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. P. H. Wiebe, T. K. Stanton, M. C. Benfield, D. G. Mountain, and C. H. Greene, “High-frequency acoustic volume backscattering in the Georges bank coastal region and its interpretation using scattering models,” IEEE Journal of Oceanic Engineering, vol. 22, no. 3, pp. 445–463, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. T. C. Torkelson, T. C. Austin, and P. H. Wiebe, “Multi-frequency acoustic assessment of fisheries and plankton resources,” in Proceedings of the 135th Meeting of the Acoustical Society of America, Seattle, Wash, USA, 1998.
  51. T. C. Torkelson, T. C. Austin, and P. H. Wiebe, “Multi-frequency acoustic assessment of fisheries and plankton resources,” in Proceedings of the 6th Meeting of the International Congress on Acoustics, Seattle, Wash, USA, 1998.
  52. O. A. Misund, “Underwater acoustics in marine fisheries and fisheries research,” Reviews in Fish Biology and Fisheries, vol. 7, no. 1, pp. 1–34, 1997. View at Scopus
  53. K. G. Foote, “Acoustic methods. Brief review and prospects for advancing fisheries research,” in The Future of Fisheries Science in North America, R. J. Beamish and B. J. Rothchild, Eds., Springer Science, 2009.
  54. D. N. MacLennan and D. V. Holliday, “Fisheries and plankton acoustics: past present and future,” ICES Journal of Marine Science, vol. 53, pp. 513–516, 1996.
  55. D. V. Holliday, “Doppler structure in echoes from schools of pelagic fish,” Journal of the Acoustical Society of America, vol. 55, no. 6, pp. 1313–1322, 1974. View at Scopus
  56. D. N. MacLennan and E. J. Simmonds, Fisheries Acoustics, Chapman and Hall, London, UK, 1992.
  57. F. Gerlotto, M. Soria, and P. Fréon, “From two dimensions to three: the use of multibeam sonar for a new approach in fisheries acoustics,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 56, no. 1, pp. 6–12, 1999. View at Scopus
  58. M. Soria, P. Fréon, and F. Gerlotto, “Analysis of vessel influence on spatial behaviour of fish schools using a multi-beam sonar and consequences for biomass estimates by echo-sounder,” ICES Journal of Marine Science, vol. 53, no. 2, pp. 453–458, 1996. View at Scopus
  59. H. E. Winn, “The biological significance of fish sounds,” in Marine Bio-Acoustics, W. N. Tavolga, Ed., Pergamon Press, Oxford, UK, 1964.
  60. D. H. Cushing, The Detection of Fish, Pergamon Press, Oxford, 1973.
  61. D. A. Mann, A. D. Hawkins, and J. M. Jech, “Active and passive acoustics to locate and study fish,” in Fish Bioacoustics, J. F. Webb, R. R. Fay, and A. N. Popper, Eds., Springer, 2007.
  62. H. Medwin and C. S. Clay, Fundamentals of Acoustic Oceanography, Academic Press, Boston, Mass, USA, 1998.
  63. G. C. Trout, A. J. Lee, I. D. Richardson, and F. R. H. Jones, “Recent echo sounder studies,” Nature, vol. 170, no. 4315, pp. 71–72, 1952. View at Publisher · View at Google Scholar · View at Scopus
  64. K. A. Johannesson and R. A. Mitson, “Fisheries acoustics,” FAO Fisheries Technical Paper 240, 1983.
  65. K. G. Foote, “Linearity of fisheries acoustics, with addition theorems,” Journal of the Acoustical Society of America, vol. 73, no. 6, pp. 1932–1940, 1983. View at Scopus
  66. M. Andrews, Z. Gong, and P. Ratilal, “High resolution population density imaging of random scatterers with the matched filtered scattered field variance,” Journal of the Acoustical Society of America, vol. 126, no. 3, pp. 1057–1068, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. Z. Gong, M. Andrews, S. Jagannathan et al., “Low-frequency target strength and abundance of shoaling Atlantic herring (Clupea harengus) in the gulf of maine during the Ocean acoustic waveguide remote sensing 2006 experiment,” Journal of the Acoustical Society of America, vol. 127, no. 1, pp. 104–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. P. G. Fernandes, F. Gerlottto, D. V. Holliday, A. Nakken, and E. J. Simmonds, “Acoustic applications in fisheries science: the ICES contribution,” in Proceedings of the ICES Marine Science Symposium, vol. 215, pp. 483–492, 2002.
  69. O. Nakken and K. Olsen, “Target strength measurements of fish,” Rapports et Procès-Verbaux des Réunions du Conseil International Pour l’Exploration de la Mer, vol. 170, pp. 52–69, 1977.
  70. R. W. G. Haslett, “Determination of the acoustic scatter patterns and cross sections of fish models and ellipsoids,” British Journal of Applied Physics, vol. 13, no. 12, article 317, pp. 611–620, 1962. View at Publisher · View at Google Scholar · View at Scopus
  71. R. W. G. Haslett, “Acoustic backscattering cross sections of fish at three frequencies and their representation on a universal graph,” British Journal of Applied Physics, vol. 16, no. 8, article 313, pp. 1143–1150, 1965. View at Publisher · View at Google Scholar · View at Scopus
  72. K. G. Foote, “Importance of the swimbladder in acoustic scattering by fish: a comparison of gadoid and mackerel target strengths,” Journal of the Acoustical Society of America, vol. 67, no. 6, pp. 2084–2089, 1980. View at Scopus
  73. K. G. Foote, “Optimizing copper spheres for precision calibration of hydroacoustic equipment,” Journal of the Acoustical Society of America, vol. 71, pp. 742–747, 1983.
  74. K. G. Foote, “Underwater acoustic technology: review of some recent developments,” Journal of Ocean Engineering, vol. 28, no. 1-2, pp. 1–6, 2003.
  75. D. R. McKelvey, The use of two frequencies to interpret acoustic scattering layers [M.S. thesis], University of Washington, Seattle, Wash, USA, 2000.
  76. R. J. Kloser, T. Ryan, P. Sakov, A. Williams, and J. A. Koslow, “Species identification in deep water using multiple acoustic frequencies,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 59, no. 6, pp. 1065–1077, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. M. P. Fish and W. H. Mowbray, Sounds of Western North Atlantic Fishes: A Reference File of Biological Underwater Sounds, The Johnb Hopkins University Press, Baltimore, Md, USA, 1970.