About this Journal Submit a Manuscript Table of Contents
International Journal of Otolaryngology
Volume 2012 (2012), Article ID 365752, 14 pages
http://dx.doi.org/10.1155/2012/365752
Research Article

Clinical Use of Aided Cortical Auditory Evoked Potentials as a Measure of Physiological Detection or Physiological Discrimination

1National Center for Rehabilitative Auditory Research, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA
2Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
3Department of Speech and Hearing Sciences, Indiana University, Bloomington, IN 47405, USA

Received 8 May 2012; Accepted 25 July 2012

Academic Editor: Kelly Tremblay

Copyright © 2012 Curtis J. Billings et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The clinical usefulness of aided cortical auditory evoked potentials (CAEPs) remains unclear despite several decades of research. One major contributor to this ambiguity is the wide range of variability across published studies and across individuals within a given study; some results demonstrate expected amplification effects, while others demonstrate limited or no amplification effects. Recent evidence indicates that some of the variability in amplification effects may be explained by distinguishing between experiments that focused on physiological detection of a stimulus versus those that differentiate responses to two audible signals, or physiological discrimination. Herein, we ask if either of these approaches is clinically feasible given the inherent challenges with aided CAEPs. N1 and P2 waves were elicited from 12 noise-masked normal-hearing individuals using hearing-aid-processed 1000-Hz pure tones. Stimulus levels were varied to study the effect of hearing-aid-signal/hearing-aid-noise audibility relative to the noise-masked thresholds. Results demonstrate that clinical use of aided CAEPs may be justified when determining whether audible stimuli are physiologically detectable relative to inaudible signals. However, differentiating aided CAEPs elicited from two suprathreshold stimuli (i.e., physiological discrimination) is problematic and should not be used for clinical decision making until a better understanding of the interaction between hearing-aid-processed stimuli and CAEPs can be established.