About this Journal Submit a Manuscript Table of Contents
International Journal of Otolaryngology
Volume 2012 (2012), Article ID 365752, 14 pages
http://dx.doi.org/10.1155/2012/365752
Research Article

Clinical Use of Aided Cortical Auditory Evoked Potentials as a Measure of Physiological Detection or Physiological Discrimination

1National Center for Rehabilitative Auditory Research, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA
2Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
3Department of Speech and Hearing Sciences, Indiana University, Bloomington, IN 47405, USA

Received 8 May 2012; Accepted 25 July 2012

Academic Editor: Kelly Tremblay

Copyright © 2012 Curtis J. Billings et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Eggermont, “Electric and magnetic fields of synchronous neural activity- peripheral and central origins of auditory evoked potentials,” in Auditory Evoked Potentials: Basic Principles and Clinical Application, Chapter 1, Lippincott Williams Wilkins, Baltimore, Maryland, 2007.
  2. R. Naatanen and T. Picton, “The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure,” Psychophysiology, vol. 24, no. 4, pp. 375–425, 1987. View at Scopus
  3. C. J. Billings, K. L. Tremblay, P. E. Souza, and M. A. Binns, “Effects of hearing aid amplification and stimulus intensity on cortical auditory evoked potentials,” Audiology and Neurotology, vol. 12, no. 4, pp. 234–246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. J. Billings, K. L. Tremblay, and C. W. Miller, “Aided cortical auditory evoked potentials in response to changes in hearing aid gain,” International Journal of Audiology, vol. 50, no. 7, pp. 459–467, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Easwar, D. Glista, D. W. Purcell, and S. D. Scollie, “Hearing aid processing changes tone burst onset: effect on cortical auditory evoked potentials in individuals with normal audiometric thresholds,” American Journal of Audiology, vol. 21, no. 1, pp. 82–90, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Gatehouse and K. Robinson, “Acclimatisation to monaural hearing aid fitting—effects on loudness functions and preliminary evidence for parallel electrophysiological and behavioural effects,” in Psychoacoustics, Speech and Hearing Aids, Bad Zwischenahn, Germany, 1995.
  7. M. Golding, W. Pearce, J. Seymour, A. Cooper, T. Ching, and H. Dillon, “The relationship between obligatory cortical auditory evoked potentials (CAEPs) and functional measures in young infants,” Journal of the American Academy of Audiology, vol. 18, no. 2, pp. 117–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. S. Gravel, D. Kurtzberg, D. R. Stapells, H. G. Vaughan, and I. F. Wallace, “Case studies,” Seminars in Hearing, vol. 10, no. 3, pp. 272–287, 1989. View at Scopus
  9. P. A. Korczak, D. Kurtzberg, and D. R. Stapells, “Effects of sensorineural hearing loss and personal hearing aids on cortical event-related potential and behavioral measures of speech-sound processing,” Ear and Hearing, vol. 26, no. 2, pp. 165–185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Kraus and T. J. McGee, “Mismatch negativity in the assessment of central auditory function,” American Journal of Audiology, vol. 3, pp. 39–51, 1994.
  11. D. Kurtzberg, “Cortical event-related potential assessment of auditory system function,” Seminars in Hearing, vol. 10, no. 3, pp. 252–261, 1989. View at Scopus
  12. S. L. Marynewich, Slow cortical potential measures of amplification [M.S. thesis], University of British Columbia, Vancouver, Canada, 2010.
  13. J. P. McCullagh, An investigation of central auditory nervous system plasticity following amplification [Ph.D. thesis], University of Connecticut, Mansfield, Conn, USA, 2010.
  14. C. McNeill, M. Sharma, and S. C. Purdy, “Are cortical auditory evoked potentials useful in the clinical assessment of adults with cochlear implants?” Cochlear Implants International, vol. 10, no. 1, pp. 78–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. J. Munro, S. C. Purdy, S. Ahmed, R. Begum, and H. Dillon, “Obligatory cortical auditory evoked potential waveform detection and differentiation using a commercially available clinical system: HEARLab,” Ear and Hearing, vol. 32, pp. 782–786, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. S. C. Purdy, R. Katsch, H. Dillon, L. Storey, M. Sharma, and K. Agung, “Aided cortical auditory evoked potentials for hearing instrument evaluation in infants,” in Proceedings of the 3nd International Conference of A Sound Foundation through Early Ampliciation, pp. 115–128, Phonak, Stafa., Switzerland, 2005.
  17. I. Rapin and L. J. Graziani, “Auditory-evoked responses in normal, brain-damaged, and deaf infants.,” Neurology, vol. 17, no. 9, pp. 881–894, 1967. View at Scopus
  18. A. Sharma, E. Tobey, M. Dorman et al., “Central auditory maturation and babbling development in infants with cochlear implants,” Archives of Otolaryngology. Head and Neck Surgery, vol. 130, no. 5, pp. 511–516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Sharma, G. Cardon, K. Henion, and P. Roland, “Cortical maturation and behavioral outcomes in children with auditory neuropathy spectrum disorder,” International Journal of Audiology, vol. 50, no. 2, pp. 98–106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. K. L. Tremblay, C. J. Billings, L. M. Friesen, and P. E. Souza, “Neural representation of amplified speech sounds,” Ear and Hearing, vol. 27, no. 2, pp. 93–103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. K. L. Tremblay, L. Kalstein, C. J. Billings, and P. E. Souza, “The neural representation of consonant-vowel transitions in adults who wear hearing aids,” Trends in Amplification, vol. 10, no. 3, pp. 155–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Prasher, M. Mula, and L. Luxon, “Cortical evoked potential criteria in the objective assessment of auditory threshold: a comparison of noise induced hearing loss with Meniere's disease,” Journal of Laryngology and Otology, vol. 107, no. 9, pp. 780–786, 1993. View at Scopus
  23. K. N. K. Yeung and L. L. N. Wong, “Prediction of hearing thresholds: comparison of cortical evoked response audiometry and auditory steady state response audiometry techniques,” International Journal of Audiology, vol. 46, no. 1, pp. 17–25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Ikeda, A. Hayashi, O. Matsuda, and T. Sekiguchi, “An ignoring task improves validity of cortical evoked response audiometry,” NeuroReport, vol. 21, no. 10, pp. 709–715, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. C. J. Billings, K. L. Tremblay, G. C. Stecker, and W. M. Tolin, “Human evoked cortical activity to signal-to-noise ratio and absolute signal level,” Hearing Research, vol. 254, no. 1-2, pp. 15–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Neuroscan Inc., “SCAN 4.4—vol. I.I. Offline Analysis of Acquired Data,” no. 2203, Revision E, pp. 141–148, Compumedics Neuroscan, Charlotte, NC, USA, 2007.
  27. W. Skrandies, “Data reduction of multichannel fields: global field power and principal component analysis,” Brain Topography, vol. 2, no. 1-2, pp. 73–80, 1989. View at Publisher · View at Google Scholar · View at Scopus
  28. J. D. Lewis, S. S. Goodman, and R. A. Bentler, “Measurement of hearing aid internal noise,” Journal of the Acoustical Society of America, vol. 127, no. 4, pp. 2521–2528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Kaplan-Neeman, L. Kishon-Rabin, Y. Henkin, and C. Muchnik, “Identification of syllables in noise: electrophysiological and behavioral correlates,” Journal of the Acoustical Society of America, vol. 120, no. 2, pp. 926–933, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Onishi and H. Davis, “Effects of duration and rise time of tone bursts on evoked V potentials.,” Journal of the Acoustical Society of America, vol. 44, no. 2, pp. 582–591, 1968. View at Scopus
  31. K. A. Whiting, B. A. Martin, and D. R. Stapells, “The effects of broadband noise masking on cortical event-related potentials to speech sounds /ba/ and /da/,” Ear and Hearing, vol. 19, no. 3, pp. 218–231, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. D. P. Phillips, “Neural representation of sound amplitude in the auditory cortex: effects of noise masking,” Behavioural Brain Research, vol. 37, no. 3, pp. 197–214, 1990. View at Publisher · View at Google Scholar · View at Scopus
  33. D. P. Phillips and J. B. Kelly, “Effects of continuous noise maskers on tone-evoked potentials in cat primary auditory cortex,” Cerebral Cortex, vol. 2, no. 2, pp. 134–140, 1992. View at Scopus