About this Journal Submit a Manuscript Table of Contents
International Journal of Otolaryngology
Volume 2012 (2012), Article ID 518202, 10 pages
http://dx.doi.org/10.1155/2012/518202
Research Article

Electroacoustic Comparison of Hearing Aid Output of Phonemes in Running Speech versus Isolation: Implications for Aided Cortical Auditory Evoked Potentials Testing

1Health and Rehabilitation Sciences (Hearing Sciences), National Centre for Audiology, Faculty of Health Sciences, Western University, London, ON, Canada N6G 1H1
2National Centre for Audiology and School of Communication Sciences and Disorders, Western University, London, ON, Canada N6G 1H1

Received 30 September 2012; Accepted 28 November 2012

Academic Editor: Catherine McMahon

Copyright © 2012 Vijayalakshmi Easwar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Dillon, Hearing Aids, Thieme Medical Publishers, 2nd edition, 2012.
  2. G. Frye, “Crest factor and composite signals for hearing aid testing,” Hearing Journal, vol. 40, no. 10, pp. 15–18, 1987.
  3. P. G. Stelmachowicz, D. E. Lewis, R. C. Seewald, and D. B. Hawkins, “Complex and pure-tone signals in the evaluation of hearing-aid characteristics,” Journal of Speech and Hearing Research, vol. 33, no. 2, pp. 380–385, 1990. View at Scopus
  4. M. A. Stone and B. C. Moore, “Syllabic compression: effective compression ratios for signals modulated at different rates,” British Journal of Audiology, vol. 26, no. 6, pp. 351–361, 1992.
  5. H. Dillon, “Compression? Yes, but for low or high frequencies, for low or high intensities, and with what response times?” Ear and Hearing, vol. 17, no. 4, pp. 287–307, 1996. View at Scopus
  6. R. L. W. Henning and R. A. Bentler, “The effects of hearing aid compression parameters on the short-term dynamic range of continuous speech,” Journal of Speech, Language, and Hearing Research, vol. 51, no. 2, pp. 471–484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. R. W. Henning and R. Bentler, “Compression-dependent differences in hearing aid gain between speech and nonspeech input signals,” Ear and Hearing, vol. 26, no. 4, pp. 409–422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. L. M. Jenstad and P. E. Souza, “Quantifying the effect of compression hearing aid release time on speech acoustics and intelligibility,” Journal of Speech, Language, and Hearing Research, vol. 48, no. 3, pp. 651–667, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. T. W. Fortune, “Real ear compression ratios: the effects of venting and adaptive release time,” American Journal of Audiology, vol. 6, no. 2, pp. 55–63, 1997. View at Scopus
  10. P. G. Stelmachowicz, J. Kopun, A. L. Mace, and D. E. Lewis, “Measures of hearing aid gain for real speech,” Ear and Hearing, vol. 17, no. 6, pp. 520–527, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Verschuure, A. J. J. Maas, E. Stikvoort, R. M. De Jong, A. Goedegebure, and W. A. Dreschler, “Compression and its effect on the speech signal,” Ear and Hearing, vol. 17, no. 2, pp. 162–174, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. E. W. Yund and K. M. Buckles, “Multichannel compression hearing aids: effect of number of channels on speech discrimination in noise,” Journal of the Acoustical Society of America, vol. 97, no. 2, pp. 1206–1223, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Bor, P. Souza, and R. Wright, “Multichannel compression: effects of reduced spectral contrast on vowel identification,” Journal of Speech, Language, and Hearing Research, vol. 51, no. 5, pp. 1315–1327, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Glista, S. Scollie, M. Bagatto, R. Seewald, V. Parsa, and A. Johnson, “Evaluation of nonlinear frequency compression: clinical outcomes,” International Journal of Audiology, vol. 48, no. 9, pp. 632–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. D. Scollie and R. C. Seewald, “Evaluation of electroacoustic test signals—I: comparison with amplified speech,” Ear and Hearing, vol. 23, no. 5, pp. 477–487, 2002. View at Scopus
  16. J. Bench, A. Kowal, and J. Bamford, “The BKB (Bamford-Kowal-Bench) sentence lists for partially-hearing children,” British Journal of Audiology, vol. 13, no. 3, pp. 108–112, 1979. View at Scopus
  17. J. R. Dubno and A. B. Schaefer, “Comparison of frequency selectivity and consonant recognition among hearing-impaired and masked normal-hearing listeners,” Journal of the Acoustical Society of America, vol. 91, no. 4, pp. 2110–2121, 1992. View at Scopus
  18. K. E. Hecox, “Role of auditory brain stem response in the selection of hearing aids,” Ear and Hearing, vol. 4, no. 1, pp. 51–55, 1983. View at Scopus
  19. J. Gravel, “Case studies,” Seminars in Hearing, vol. 10, no. 3, pp. 272–287, 1989.
  20. A. Dimitrijevic, M. S. John, and T. W. Picton, “Auditory steady-state responses and word recognition scores in normal-hearing and hearing-impaired adults,” Ear and Hearing, vol. 25, no. 1, pp. 68–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Purdy, R. Katsch, H. Dillon, L. Storey, M. Sharma, and K. Agung, “Aided cortical auditory evoked potentials for hearing instrument evaluation in infants,” in A Sound Foundation Through Early Amplification, pp. 115–127, 2005.
  22. P. A. Korczak, D. Kurtzberg, and D. R. Stapells, “Effects of sensorineural hearing loss and personal hearing aids on cortical event-related potential and behavioral measures of speech-sound processing,” Ear and Hearing, vol. 26, no. 2, pp. 165–185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. K. L. Tremblay, L. Kalstein, C. J. Billings, and P. E. Souza, “The neural representation of consonant-vowel transitions in adults who wear hearing aids,” Trends in Amplification, vol. 10, no. 3, pp. 155–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Dillon, “So, baby, low it sound? Cortical assessment of infants with hearing aids,” Hearing Journal, vol. 58, no. 10, pp. 10–17, 2005. View at Scopus
  25. K. L. Tremblay, C. J. Billings, L. M. Friesen, and P. E. Souza, “Neural representation of amplified speech sounds,” Ear and Hearing, vol. 27, no. 2, pp. 93–103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Van Dun and L. Carter, “Sensitivity of cortical auditory evoked potential (CAEP) detection for hearing-impaired infants in response to short speech sounds,” Audiology Research, vol. 2, no. 13, pp. 65–76, 2012.
  27. M. Golding, W. Pearce, J. Seymour, A. Cooper, T. Ching, and H. Dillon, “The relationship between obligatory cortical auditory evoked potentials (CAEPs) and functional measures in young infants,” Journal of the American Academy of Audiology, vol. 18, no. 2, pp. 117–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. K. L. Tremblay, L. Friesen, B. A. Martin, and R. Wright, “Test-retest reliability of cortical evoked potentials using naturally produced speech sounds,” Ear and Hearing, vol. 24, no. 3, pp. 225–232, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Easwar, D. Glista, D. W. Purcell, and S. D. Scollie, “The effect of stimulus choice on cortical auditory evoked potentials (CAEP): consideration of speech segment positioning within naturally produced speech,” International Journal of Audiology, vol. 51, no. 12, pp. 926–931, 2012.
  30. M. Golding, S. Purdy, M. Sharma, and H. Dillon, “The effect of stimulus duration and inter-stimulus interval on cortical responses in infants,” Australian and New Zealand Journal of Audiology, vol. 28, no. 2, pp. 122–136, 2006. View at Scopus
  31. T. W. Budd, R. J. Barry, E. Gordon, C. Rennie, and P. T. Michie, “Decrement of the N1 auditory event-related potential with stimulus repetition: habituation versus refractoriness,” International Journal of Psychophysiology, vol. 31, no. 1, pp. 51–68, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. B. A. Martin, K. L. Tremblay, and D. R. Stapells, “Principles and applications of Cortical Auditory Evoked Potentials,” in Auditory Evoked Potentials: Basic Principles and Clinical Application, R. F. Burkard, J. J. Eggermont, and M. Don, Eds., vol. 23, pp. 482–507, Lippincott WIlliams and Wilkins, Philadelphia, Pa, USA, 2007.
  33. G. Lightfoot and V. Kennedy, “Cortical electric response audiometry hearing threshold estimation: accuracy, speed, and the effects of stimulus presentation features,” Ear and Hearing, vol. 27, no. 5, pp. 443–456, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Tsui, L. L. N. Wong, and E. C. M. Wong, “Accuracy of cortical evoked response audiometry in the identification of non-organic hearing loss,” International Journal of Audiology, vol. 41, no. 6, pp. 330–333, 2002.
  35. R. Martin, M. Villasenor, H. Dillon, L. Carter, and S. Purdy, “HEARLab: bringing hearing to infants,” Frye Electronics Inc, Tigard, Ore, USA, 2008, http://www.frye.com/.
  36. V. Easwar, D. Glista, D. W. Purcell, and S. D. Scollie, “Hearing aid processing changes tone burst onset: effect on cortical auditory evoked potentials in individuals with normal audiometric thresholds,” American Journal of Audiology, vol. 21, no. 1, pp. 82–90, 2012.
  37. M. Brennan and P. Souza, “Effects of expansion on consonant recognition and consonant audibility,” Journal of the American Academy of Audiology, vol. 20, no. 2, pp. 119–127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. P. N. Plyler, A. B. Hill, and T. D. Trine, “The effects of expansion time constants on the objective performance of hearing instrument users,” Journal of the American Academy of Audiology, vol. 16, no. 8, pp. 614–621, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Bisgaard, M. S. M. G. Vlaming, and M. Dahlquist, “Standard audiograms for the IEC 60118-15 measurement procedure,” Trends in Amplification, vol. 14, no. 2, pp. 113–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. L. M. Jenstad, S. Marynewich, and D. R. Stapells, “Slow cortical potentials and amplification—part II: acoustic measures,” International Journal of Otolaryngology, vol. 2012, pp. 1–14, 2012.
  41. S. Marynewich, L. M. Jenstad, and D. R. Stapells, “Slow cortical potentials and amplification—part I: N1-P2 measures,” International Journal of Otolaryngology, vol. 2012, pp. 1–11, 2012.
  42. S. Onishi and H. Davis, “Effects of duration and rise time of tone bursts on evoked V potentials,” Journal of the Acoustical Society of America, vol. 44, no. 2, pp. 582–591, 1968. View at Scopus
  43. S. Scollie, R. Seewald, L. Cornelisse et al., “The desired sensation level multistage input/output algorithm,” Trends in Amplification, vol. 9, no. 4, pp. 159–197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Ling, Foundations of Spoken Language for Hearing-Impaired Children, Alexander Graham Bell Association for the Deaf, Washington, DC, USA, 1989.
  45. S. Scollie, D. Glista, J. Tenhaaf et al., “Stimuli and normative data for detection of Ling-6 sounds in hearing level,” American Journal of Audiology, vol. 21, pp. 232–241, 2012.
  46. H.-W. Chang, H. Dillon, L. Carter, B. Van Dun, and S.-T. Young, “The relationship between cortical auditory evoked potential (CAEP) detection and estimated audibility in infants with sensorineural hearing loss,” International Journal of Audiology, vol. 51, pp. 663–670, 2012.
  47. Acoustical Society of America, “ASA S3.22-2003—American National Standard Specification of Hearing Aid Characteristics,” New York, NY, USA.
  48. W. O. Olsen, “Average speech levels and spectra in various speaking/listening conditions: a summary of the Pearson, Bennett, & Fidell (1977) report,” American Journal of Audiology, vol. 7, no. 2, pp. 21–25, 1998. View at Scopus
  49. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society Series B, vol. 57, pp. 289–300, 1995.
  50. Y. Benjamini, D. Drai, G. Elmer, N. Kafkafi, and I. Golani, “Controlling the false discovery rate in behavior genetics research,” Behavioural Brain Research, vol. 125, no. 1-2, pp. 279–284, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Dillon, G. Keidser, A. O'Brien, and H. Silberstein, “Sound quality comparisons of advanced hearing aids,” Hearing Journal, vol. 56, no. 4, pp. 30–40, 2003. View at Scopus
  52. C. J. Billings, K. L. Tremblay, P. E. Souza, and M. A. Binns, “Effects of hearing aid amplification and stimulus intensity on cortical auditory evoked potentials,” Audiology and Neurotology, vol. 12, no. 4, pp. 234–246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Golding, H. Dillon, J. Seymour, and L. Carter, “The detection of adult cortical auditory evoked potentials (CAEPs) using an automated statistic and visual detection,” International Journal of Audiology, vol. 48, no. 12, pp. 833–842, 2009. View at Publisher · View at Google Scholar · View at Scopus