About this Journal Submit a Manuscript Table of Contents
International Journal of Otolaryngology
Volume 2013 (2013), Article ID 604729, 10 pages
http://dx.doi.org/10.1155/2013/604729
Review Article

The Potential Role of the cABR in Assessment and Management of Hearing Impairment

Samira Anderson1,2,3 and Nina Kraus1,2,4,5

1Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL 60208, USA
2Department of Communication Sciences, Northwestern University, Evanston, IL 60208, USA
3Department of Hearing and Speech Sciences, University of Maryland, 0100 Lefrak Hall, College Park, MD 20742, USA
4Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
5Department of Otolaryngology, Northwestern University, Evanston, IL 60208, USA

Received 15 June 2012; Accepted 31 October 2012

Academic Editor: Kelly Tremblay

Copyright © 2013 Samira Anderson and Nina Kraus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Gordon-Salant, P. J. Fitzgibbons, and S. A. Friedman, “Recognition of time-compressed and natural speech with selective temporal enhancements by young and elderly listeners,” Journal of Speech, Language, and Hearing Research, vol. 50, no. 5, pp. 1181–1193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. M. CasparyJ, J. C. Milbrand, and R. H. Helfert, “Central auditory aging: GABA changes in the inferior colliculus,” Experimental Gerontology, vol. 30, no. 3-4, pp. 349–360, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. K. L. Tremblay, M. Piskosz, and P. Souza, “Effects of age and age-related hearing loss on the neural representation of speech cues,” Clinical Neurophysiology, vol. 114, no. 7, pp. 1332–1343, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. K. C. Harris, M. A. Eckert, J. B. Ahlstrom, and J. R. Dubno, “Age-related differences in gap detection: effects of task difficulty and cognitive ability,” Hearing Research, vol. 264, no. 1-2, pp. 21–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. P. Walton, “Timing is everything: temporal processing deficits in the aged auditory brainstem,” Hearing Research, vol. 264, no. 1-2, pp. 63–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. K. Pichora-Fuller, B. A. Schneider, E. MacDonald, H. E. Pass, and S. Brown, “Temporal jitter disrupts speech intelligibility: a simulation of auditory aging,” Hearing Research, vol. 223, no. 1-2, pp. 114–121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. B. G. Shinn-Cunningham and V. Best, “Selective attention in normal and impaired hearing,” Trends in Amplification, vol. 12, no. 4, pp. 283–299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. K. Pichora-Fuller, “Cognitive aging and auditory information processing,” International Journal of Audiology, vol. 42, no. S2, pp. 26–32, 2003. View at Scopus
  9. J. Hall, New Handbook of Auditory Evoked Responses, Allyn & Bacon, Boston, Mass, USA, 2007.
  10. S. Greenberg, Neural Temporal Coding of Pitch and Vowel Quality : Human Frequency-Following Response Studies of Complex Signals, Phonetics Laboratory, Department of Linguistics, UCLA, Los Angeles, Calif, USA, 1980.
  11. S. Greenberg, J. T. Marsh, W. S. Brown, and J. C. Smith, “Neural temporal coding of low pitch. I. Human frequency-following responses to complex tones,” Hearing Research, vol. 25, no. 2-3, pp. 91–114, 1987. View at Scopus
  12. N. Kraus, “Listening in on the listening brain,” Physics Today, vol. 64, no. 6, pp. 40–45, 2011.
  13. E. Skoe and N. Kraus, “Auditory brain stem response to complex sounds: a tutorial,” Ear and Hearing, vol. 31, no. 3, pp. 302–324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Chandrasekaran and N. Kraus, “The scalp-recorded brainstem response to speech: neural origins and plasticity,” Psychophysiology, vol. 47, no. 2, pp. 236–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. Song, K. Banai, N. M. Russo, and N. Kraus, “On the relationship between speech- and nonspeech-evoked auditory brainstem responses,” Audiology and Neurotology, vol. 11, no. 4, pp. 233–241, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. G. A. Miller and P. E. Nicely, “An analysis of perceptual confusions among some English consonants,” Journal of the Acoustical Society of America, vol. 27, no. 2, pp. 338–352, 1955.
  17. S. Anderson, E. Skoe, B. Chandrasekaran, and N. Kraus, “Neural timing is linked to speech perception in noise,” Journal of Neuroscience, vol. 30, no. 14, pp. 4922–4926, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Gorga, P. Abbas, and D. Worthington, “Stimulus calibration in ABR measurements,” in The Auditory Brainstem Response, J. Jacobsen, Ed., pp. 49–62, College Hill Press, San Diego, Calif, USA, 1985.
  19. T. Campbell, J. R. Kerlin, C. W. Bishop, and L. M. Miller, “Methods to eliminate stimulus transduction artifact from insert earphones during electroencephalography,” Ear and Hearing, vol. 33, no. 1, pp. 144–150, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. S. J. Aiken and T. W. Picton, “Envelope and spectral frequency-following responses to vowel sounds,” Hearing Research, vol. 245, no. 1-2, pp. 35–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Hornickel, S. Anderson, E. Skoe, H. G. Yi, and N. Kraus, “Subcortical representation of speech fine structure relates to reading ability,” NeuroReport, vol. 23, no. 1, pp. 6–9, 2012.
  22. S. Anderson, E. Skoe, B. Chandrasekaran, S. Zecker, and N. Kraus, “Brainstem correlates of speech-in-noise perception in children,” Hearing Research, vol. 270, no. 1-2, pp. 151–157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. G. C. Galbraith, P. W. Arbagey, R. Branski, N. Comerci, and P. M. Rector, “Intelligible speech encoded in the human brain stem frequency-following response,” NeuroReport, vol. 6, no. 17, pp. 2363–2367, 1995. View at Scopus
  24. A. Krishnan, Y. Xu, J. Gandour, and P. Cariani, “Encoding of pitch in the human brainstem is sensitive to language experience,” Cognitive Brain Research, vol. 25, no. 1, pp. 161–168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Russo, T. Nicol, G. Musacchia, and N. Kraus, “Brainstem responses to speech syllables,” Clinical Neurophysiology, vol. 115, no. 9, pp. 2021–2030, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Hornickel, E. Skoe, T. Nicol, S. Zecker, and N. Kraus, “Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 13022–13027, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Skoe, T. Nicol, and N. Kraus, “Cross-phaseogram: objective neural index of speech sound differentiation,” Journal of Neuroscience Methods, vol. 196, no. 2, pp. 308–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Parbery-Clark, A. Tierney, D. L. Strait, and N. Kraus, “Musicians have fine-tuned neural discrimination of speech syllables,” Neuroscience, vol. 219, no. 2, pp. 111–119, 2012.
  29. J. H. Song, E. Skoe, P. C. M. Wong, and N. Kraus, “Plasticity in the adult human auditory brainstem following short-term linguistic training,” Journal of Cognitive Neuroscience, vol. 20, no. 10, pp. 1892–1902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. N. M. Russo, E. Skoe, B. Trommer et al., “Deficient brainstem encoding of pitch in children with Autism Spectrum Disorders,” Clinical Neurophysiology, vol. 119, no. 8, pp. 1720–1731, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. P. C. M. Wong, E. Skoe, N. M. Russo, T. Dees, and N. Kraus, “Musical experience shapes human brainstem encoding of linguistic pitch patterns,” Nature Neuroscience, vol. 10, no. 4, pp. 420–422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Rance, “Auditory neuropathy/dys-synchrony and its perceptual consequences,” Trends in Amplification, vol. 9, no. 1, pp. 1–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Starr, T. W. Picton, Y. Sininger, L. J. Hood, and C. I. Berlin, “Auditory neuropathy,” Brain, vol. 119, no. 3, pp. 741–753, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Kraus, A. R. Bradlow, M. A. Cheatham, et al., “Consequences of neural asynchrony: a case of of auditory neuropathy,” Journal of the Association for Research in Otolaryngology, vol. 1, no. 1, pp. 33–45, 2000.
  35. J. Fell, “Cognitive neurophysiology: beyond averaging,” NeuroImage, vol. 37, no. 4, pp. 1069–1072, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Anderson, A. Parbery-Clark, T. White-Schwoch, and N. Kraus, “Aging affects neural precision of speech encoding,” The Journal of Neuroscience, vol. 32, no. 41, pp. 14156–14164, 2012.
  37. C. Tallon-Baudry, O. Bertrand, C. Delpuech, and J. Pernier, “Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human,” The Journal of Neuroscience, vol. 16, no. 13, pp. 4240–4249, 1996. View at Scopus
  38. S. Anderson, A. Parbery-Clark, H. G. Yi, and N. Kraus, “A neural basis of speech-in-noise perception in older adults,” Ear and Hearing, vol. 32, no. 6, pp. 750–757, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. J. H. Song, T. Nicol, and N. Kraus, “Test-retest reliability of the speech-evoked auditory brainstem response,” Clinical Neurophysiology, vol. 122, no. 2, pp. 346–355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Hornickel, E. Knowles, and N. Kraus, “Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children,” Hearing Research, vol. 284, no. 1-2, pp. 52–58, 2012.
  41. K. Banai, J. Hornickel, E. Skoe, T. Nicol, S. Zecker, and N. Kraus, “Reading and subcortical auditory function,” Cerebral Cortex, vol. 19, no. 11, pp. 2699–2707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Wible, T. Nicol, and N. Kraus, “Atypical brainstem representation of onset and formant structure of speech sounds in children with language-based learning problems,” Biological Psychology, vol. 67, no. 3, pp. 299–317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Anderson, A. Parbery-Clark, and N. Kraus, “Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance,” Journal of Speech, Language, and Hearing Research. In press.
  44. M. Basu, A. Krishnan, and C. Weber-Fox, “Brainstem correlates of temporal auditory processing in children with specific language impairment,” Developmental Science, vol. 13, no. 1, pp. 77–91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Killion and P. Niquette, “What can the pure-tone audiogram tell us about a patient’s SNR loss?” Hearing Journal, vol. 53, no. 3, pp. 46–53, 2000.
  46. P. E. Souza, K. T. Boike, K. Witherell, and K. Tremblay, “Prediction of speech recognition from audibility in older listeners with hearing loss: effects of age, amplification, and background noise,” Journal of the American Academy of Audiology, vol. 18, no. 1, pp. 54–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. S. E. Hargus and S. Gordon-Salant, “Accuracy of speech intelligibility index predictions for noise-masked young listeners with normal hearing and for elderly listeners with hearing impairment,” Journal of Speech and Hearing Research, vol. 38, no. 1, pp. 234–243, 1995. View at Scopus
  48. B. R. Schofield, “Projections to the inferior colliculus from layer VI cells of auditory cortex,” Neuroscience, vol. 159, no. 1, pp. 246–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. W. H. A. M. Mulders, K. Seluakumaran, and D. Robertson, “Efferent pathways modulate hyperactivity in inferior colliculus,” Journal of Neuroscience, vol. 30, no. 28, pp. 9578–9587, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. J. Oxenham, “Pitch perception and auditory stream segregation: implications for hearing loss and cochlear implants,” Trends in Amplification, vol. 12, no. 4, pp. 316–331, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Ruggles, H. Bharadwaj, and B. G. Shinn-Cunningham, “Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 37, pp. 15516–15521, 2011.
  52. S. A. Shamma, “Hearing impairments hidden in normal listeners,” Proceedings of the National Academy of Sciences, vol. 108, no. 39, pp. 16139–16140, 2011.
  53. J. H. Song, E. Skoe, K. Banai, and N. Kraus, “Perception of speech in noise: neural correlates,” Journal of Cognitive Neuroscience, vol. 23, no. 9, pp. 2268–2279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. K. J. Cruickshanks, T. L. Wiley, T. S. Tweed et al., “Prevalence of hearing loss in older adults in Beaver dam, Wisconsin. The epidemiology of hearing loss study,” American Journal of Epidemiology, vol. 148, no. 9, pp. 879–886, 1998. View at Scopus
  55. S. Gordon-Salant and P. J. Fitzgibbons, “Temporal factors and speech recognition performance in young and elderly listeners,” Journal of Speech and Hearing Research, vol. 36, no. 6, pp. 1276–1285, 1993. View at Scopus
  56. J. R. Dubno, D. D. Dirks, and D. E. Morgan, “Effects of age and mild hearing loss on speech recognition in noise,” Journal of the Acoustical Society of America, vol. 76, no. 1, pp. 87–96, 1984. View at Scopus
  57. S. Kim, R. D. Frisina, F. M. Mapes, E. D. Hickman, and D. R. Frisina, “Effect of age on binaural speech intelligibility in normal hearing adults,” Speech Communication, vol. 48, no. 6, pp. 591–597, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. J. H. Lee and L. E. Humes, “Effect of fundamental-frequency and sentence-onset differences on speech-identification performance of young and older adults in a competing-talker background,” The Journal of the Acoustical Society of America, vol. 132, no. 3, pp. 1700–1717, 2012.
  59. K. R. Vander Werff and K. S. Burns, “Brain stem responses to speech in younger and older adults,” Ear and Hearing, vol. 32, no. 2, pp. 168–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Parbery-Clark, S. Anderson, E. Hittner, and N. Kraus, “Musical experience offsets age-related delays in neural timing,” Neurobiol of Aging, vol. 33, no. 7, pp. 1483.e1–1483.e4, 2012. View at Publisher · View at Google Scholar
  61. K. S. Helfer and M. Vargo, “Speech recognition and temporal processing in middle-aged women,” Journal of the American Academy of Audiology, vol. 20, no. 4, pp. 264–271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Gatehouse and W. Noble, “The speech, spatial and qualities of hearing scale (SSQ),” International Journal of Audiology, vol. 43, no. 2, pp. 85–99, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. V. M. Bajo, F. R. Nodal, D. R. Moore, and A. J. King, “The descending corticocollicular pathway mediates learning-induced auditory plasticity,” Nature Neuroscience, vol. 13, no. 2, pp. 253–260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Suga and X. Ma, “Multiparametric corticofugal modulation and plasticity in the auditory system,” Nature Reviews Neuroscience, vol. 4, no. 10, pp. 783–794, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Krizman, V. Marian, A. Shook, E. Skoe, and N. Kraus, “Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages,” Proceedings of the National Academy of Sciences, vol. 109, no. 20, pp. 7877–7881, 2012.
  66. J. H. Song, E. Skoe, K. Banai, and N. Kraus, “Training to improve hearing speech in noise: biological mechanisms,” Cerebral Cortex, vol. 22, no. 5, pp. 1180–1190, 2012. View at Publisher · View at Google Scholar
  67. E. Skoe and N. Kraus, “A little goes a long way: how the adult brain is shaped by musical training in childhood,” Journal of Neuroscience, vol. 32, no. 34, pp. 11507–11510, 2012.
  68. A. Parbery-Clark, E. Skoe, and N. Kraus, “Musical experience limits the degradative effects of background noise on the neural processing of sound,” Journal of Neuroscience, vol. 29, no. 45, pp. 14100–14107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. D. L. Strait, N. Kraus, E. Skoe, and R. Ashley, “Musical experience and neural efficiency—effects of training on subcortical processing of vocal expressions of emotion,” European Journal of Neuroscience, vol. 29, no. 3, pp. 661–668, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Musacchia, M. Sams, E. Skoe, and N. Kraus, “Musicians have enhanced subcortical auditory and audiovisual processing of speech and music,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 40, pp. 15894–15898, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. K. M. Lee, E. Skoe, N. Kraus, and R. Ashley, “Selective subcortical enhancement of musical intervals in musicians,” Journal of Neuroscience, vol. 29, no. 18, pp. 5832–5840, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. G. M. Bidelman, J. T. Gandour, and A. Krishnan, “Cross-domain effects of music and language experience on the representation of pitch in the human auditory brainstem,” Journal of Cognitive Neuroscience, vol. 23, no. 2, pp. 425–434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. G. M. Bidelman and A. Krishnan, “Effects of reverberation on brainstem representation of speech in musicians and non-musicians,” Brain Research, vol. 1355, pp. 112–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. A. D. Patel, “Why would musical training benefit the neural encoding of speech? The OPERA hypothesis,” Frontiers in Psychology, vol. 2, article 142, 2011.
  75. N. Kraus and B. Chandrasekaran, “Music training for the development of auditory skills,” Nature Reviews Neuroscience, vol. 11, no. 8, pp. 599–605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. R. F. Burkard and D. Sims, “A comparison of the effects of broadband masking noise on the auditory brainstem response in young and older adults,” American Journal of Audiology, vol. 11, no. 1, pp. 13–22, 2002. View at Scopus
  77. A. Parbery-Clark, E. Skoe, C. Lam, and N. Kraus, “Musician enhancement for speech-in-noise,” Ear and Hearing, vol. 30, no. 6, pp. 653–661, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Anderson, A. Parbery-Clark, T. White-Schwoch, and N. Kraus, “Sensory-cognitive interactions predict speech-in-noise perception: a structural equation modeling approach,” in Proceedings of the Cognitive Neuroscience Society Annual Meeting, Chicago, Ill, USA, 2012.
  79. S. Carcagno and C. J. Plack, “Subcortical plasticity following perceptual learning in a pitch discrimination task,” Journal of the Association for Research in Otolaryngology, vol. 12, no. 1, pp. 89–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. J. de Boer and A. R. D. Thornton, “Neural correlates of perceptual learning in the auditory brainstem: efferent activity predicts and reflects improvement at a speech-in-noise discrimination task,” Journal of Neuroscience, vol. 28, no. 19, pp. 4929–4937, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. M. C. Killion, P. A. Niquette, G. I. Gudmundsen, L. J. Revit, and S. Banerjee, “Development of a quick speech-in-noise test for measuring signal-to-noise ratio loss in normal-hearing and hearing-impaired listeners,” The Journal of the Acoustical Society of America, vol. 116, no. 4, pp. 2395–2405, 2004.
  82. M. Nilsson, S. D. Soli, and J. A. Sullivan, “Development of the hearing in noise test for the measurement of speech reception thresholds in quiet and in noise,” Journal of the Acoustical Society of America, vol. 95, no. 2, pp. 1085–1099, 1994. View at Scopus
  83. C. W. Newman, B. E. Weinstein, G. P. Jacobson, and G. A. Hug, “Amplification and aural rehabilitation. Test-retest reliability of the hearing handicap inventory for adults,” Ear and Hearing, vol. 12, no. 5, pp. 355–357, 1991. View at Scopus
  84. H. Dillon, A. James, and J. Ginis, “Client Oriented Scale of Improvement (COSI) and its relationship to several other measures of benefit and satisfaction provided by hearing aids,” Journal of the American Academy of Audiology, vol. 8, no. 1, pp. 27–43, 1997. View at Scopus
  85. R. W. Sweetow and J. H. Sabes, “The need for and development of an adaptive listening and communication enchancement (LACE) program,” Journal of the American Academy of Audiology, vol. 17, no. 8, pp. 538–558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Anderson, T. White-Schwoch, A. Parbery-Clark, and N. Kraus, “Reversal of age-related neural timing delays with training,” Proceedings of the National Academy of Sciences. In press.
  87. A. Sharma, G. Cardon, K. Henion, and P. Roland, “Cortical maturation and behavioral outcomes in children with auditory neuropathy spectrum disorder,” International Journal of Audiology, vol. 50, no. 2, pp. 98–106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Sharma, A. A. Nash, and M. Dorman, “Cortical development, plasticity and re-organization in children with cochlear implants,” Journal of Communication Disorders, vol. 42, no. 4, pp. 272–279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. W. Pearce, M. Golding, and H. Dillon, “Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies,” Journal of the American Academy of Audiology, vol. 18, no. 5, pp. 380–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. C. J. Billings, K. L. Tremblay, and C. W. Miller, “Aided cortical auditory evoked potentials in response to changes in hearing aid gain,” International Journal of Audiology, vol. 50, no. 7, pp. 459–467, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Kochkin, “MarkeTrak VIII Mini-BTEs tap new market, users more satisfied,” Hearing Journal, vol. 64, no. 3, pp. 17–18, 2011. View at Publisher · View at Google Scholar · View at Scopus