About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2012 (2012), Article ID 198497, 6 pages
http://dx.doi.org/10.1155/2012/198497
Research Article

Hydrothermal Synthesis of Nitrogen-Doped Titanium Dioxide and Evaluation of Its Visible Light Photocatalytic Activity

Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004, China

Received 14 September 2011; Revised 6 November 2011; Accepted 8 December 2011

Academic Editor: Mietek Jaroniec

Copyright © 2012 Junjie Qian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995. View at Scopus
  2. S. P. Kowalczyk, F. R. McFeely, L. Ley, V. T. Gritsyna, and D. A. Shirley, “The electronic structure of SrTiO3 and some simple related oxides (MgO, Al2O3, SrO, TiO2),” Solid State Communications, vol. 23, no. 3, pp. 161–169, 1977. View at Scopus
  3. U. Siemon, D. Bahnemann, J. J. Testa, D. Rodríguez, M. I. Litter, and N. Bruno, “Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2,” Journal of Photochemistry and Photobiology A, vol. 148, no. 1–3, pp. 247–255, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Mrowetz, W. Balcerski, A. J. Colussi, and M. R. Hoffmann, “Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination,” Journal of Physical Chemistry B, vol. 108, no. 45, pp. 17269–17273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Choi, A. Termin, and M. R. Hoffmann, “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics,” Journal of Physical Chemistry, vol. 98, no. 51, pp. 13669–13679, 1994. View at Scopus
  6. M. Takeuchi, H. Yamashita, M. Matsuoka et al., “Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO2 thin film photocatalyst,” Catalysis Letters, vol. 67, no. 2–4, pp. 135–137, 2000. View at Scopus
  7. J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, “Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale,” Journal of Physical Chemistry B, vol. 108, no. 4, pp. 1230–1240, 2004. View at Scopus
  8. H. Irie, Y. Watanabe, and K. Hashimoto, “Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst,” Chemistry Letters, vol. 32, no. 8, pp. 772–773, 2003. View at Scopus
  9. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Irie, Y. Watanabe, and K. Hashimoto, “Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders,” Journal of Physical Chemistry B, vol. 107, no. 23, pp. 5483–5486, 2003. View at Scopus
  11. T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Applied Catalysis B, vol. 42, no. 4, pp. 403–409, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Zhang, W. Li, Z. Jin et al., “Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid,” Journal of Solid State Chemistry, vol. 177, no. 4-5, pp. 1365–1371, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Wang, C. Feng, M. Zhang, J. Yang, and Z. Zhang, “Visible light active N-doped TiO2 prepared from different precursors: origin of the visible light absorption and photoactivity,” Applied Catalysis B, vol. 104, no. 3-4, pp. 268–274, 2011. View at Publisher · View at Google Scholar
  14. J. Yang, Z. Jin, X. Wang et al., “Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2,” Journal of the Chemical Society. Dalton Transactions, no. 20, pp. 3898–3901, 2003. View at Scopus
  15. G. Cui, Z. Xu, Y. Wang, M. Zhang, and J. Yang, “A new method to prepare the novel anatase TiO2,” Surface Review and Letters, vol. 15, no. 4, pp. 509–513, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. P. M. Kumar, S. Badrinarayanan, and M. Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Thin Solid Films, vol. 358, no. 1, pp. 122–130, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Erdem, R. A. Hunsicker, G. W. Simmons, E. David Sudol, V. L. Dimonie, and M. S. El-Aasser, “XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation,” Langmuir, vol. 17, no. 9, pp. 2664–2669, 2001. View at Scopus
  18. N. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: an x-ray photoelectron spectroscopy study,” Journal of Applied Physics, vol. 72, no. 7, pp. 3072–3079, 1992. View at Publisher · View at Google Scholar · View at Scopus
  19. S. K. Joung, T. Amemiya, M. Murabayashi, and K. Itoh, “Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts,” Chemistry, vol. 12, no. 21, pp. 5526–5534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Sato, R. Nakamura, and S. Abe, “Visible-light sensitization of TiO2 photocatalysts by wet-method N doping,” Applied Catalysis A, vol. 284, no. 1-2, pp. 131–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, “Enhanced nitrogen doping in TiO2 nanoparticles,” Nano Letters, vol. 3, no. 8, pp. 1049–1051, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Yamada, H. Yamane, S. Matsushima et al., “Effect of thermal treatment on photocatalytic activity of N-doped TiO2 particles under visible light,” Thin Solid Films, vol. 516, no. 21, pp. 7482–7487, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Lin, A. Orlov, R. M. Lambert, and M. C. Payne, “New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2,” Journal of Physical Chemistry B, vol. 109, no. 44, pp. 20948–20952, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Liu, J. Yu, and S. Mann, “Synergetic codoping in fluorinated Ti1-xZrxO2 hollow microspheres,” Journal of Physical Chemistry C, vol. 113, no. 24, pp. 10712–10717, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Shiyanovskaya and M. Hepel, “Decrease of recombination losses in bicomponent WO3/TiO2 films photosensitized with cresyl violet and thionine,” Journal of the Electrochemical Society, vol. 145, no. 11, pp. 3981–3985, 1998. View at Scopus