About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2012 (2012), Article ID 362084, 4 pages
Research Article

Detection of Ammonia in Liquids Using Millimeter Wave Spectroscopy

1The Scientific and Technological Research Council of Turkey, Gebze, Kocaeli, Turkey
2Department of Electrical and Electronics Engineering, Yeditepe University, Istanbul, Turkey

Received 13 July 2012; Accepted 5 October 2012

Academic Editor: Ipek Karaaslan

Copyright © 2012 Hilmi Ozturk et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. C. Kemp, “Millimetre wave and terahertz technology for the detection of concealed threats—a review,” in Optics and Photonics for Counterterrorism and Crime Fighting II, vol. 6402 of Proceedings of SPIE, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, McGraw, 1994.
  3. W. Gordy, “Microwave molecular spectra,” in Technique of Organic Chemistry, A. Weissberger, Ed., vol. 9, Interscience, New York, NY, USA, 1970.
  4. P. Atkins and J. de Paula, Physical Chemistry, W. H. Freeman, 8th edition, 2006.
  5. R. J. Silbey, R. A. Alberty, and M. G. Bawendi, Physical Chemistry, John Wiley & Sons, New Jersey, NJ, USA, 2004.
  6. M. Szlazak, S. Y. Yam, D. Majstorovic, H. Hansen, and D. Abbott, “Remote gas detection using millimeter-wave spectroscopy for counter bio-terrorism,” in Biomedical Applications of Micro- and Nanoengineering, vol. 4937 of Proceedings of SPIE, pp. 73–83, December 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A. R. Emery and R. C. Taylor, “Raman spectroscopy in liquid ammonia solutions. Vibrational frequencies and force constants for isotopic species of the borohydride ion having tetrahedral symmetry,” The Journal of Chemical Physics, vol. 28, no. 6, pp. 1029–1032, 1958. View at Scopus
  8. J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” Journal of Physical Chemistry, vol. 100, no. 24, pp. 10373–10379, 1996. View at Scopus
  9. T. Ujike and Y. Tominaga, “Raman spectral analysis of liquid ammonia and aqueous solution of ammonia,” Journal of Raman Spectroscopy, vol. 33, no. 6, pp. 485–493, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Bromberg, S. Kimel, and A. Ron, “Infrared spectrum of liquid and crystalline ammonia,” Chemical Physics Letters, vol. 46, no. 2, pp. 262–266, 1977. View at Scopus
  11. D. J. Gardiner, R. E. Hester, and W. E. L. Grossman, “Ammonia in the liquid state and in solution: a Raman study,” Journal of Raman Spectroscopy, vol. 1, no. 1, pp. 87–95, 1973. View at Scopus
  12. J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared absorption spectra of water, ammonia, and chloroform calculated from instantaneous normal mode theory,” Journal of Chemical Physics, vol. 106, no. 11, pp. 4389–4400, 1997. View at Scopus
  13. C. E. Cleeton and N. H. Williams, “Electromagnetic waves of 1.1 cm wave-length and the absorption spectrum of ammonia,” Physical Review, vol. 45, no. 4, pp. 234–237, 1934. View at Publisher · View at Google Scholar · View at Scopus
  14. S. G. Kukolich, “Measurement of ammonia hyperfine structure with a two-cavity maser,” Physical Review, vol. 156, no. 1, pp. 83–92, 1967. View at Publisher · View at Google Scholar · View at Scopus
  15. A. C. Cheung, D. M. Rank, C. H. Townes, D. D. Thornton, and W. J. Welch, “Detection of NH3 molecules in the interstellar medium by their microwave emission,” Physical Review Letters, vol. 21, no. 25, pp. 1701–1705, 1968. View at Publisher · View at Google Scholar · View at Scopus