About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2012 (2012), Article ID 637943, 7 pages
http://dx.doi.org/10.1155/2012/637943
Research Article

Optimised In2S3 Thin Films Deposited by Spray Pyrolysis

1Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, 1000 Skopje, Macedonia
2Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
3Department of Physical Chemistry, Chalmers University of Technology, Kemivagen 10, 41296 Gothenburg, Sweden

Received 29 September 2011; Accepted 28 October 2011

Academic Editor: Yuexiang Li

Copyright © 2012 Hristina Spasevska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. O'Hayre, M. Nanu, J. Schoonman, and A. Goossens, “Mott - Schottky and charge-transport analysis of nanoporous titanium dioxide films in air,” Journal of Physical Chemistry C, vol. 111, no. 12, pp. 4809–4814, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Naghavi, D. Abou-Ras, N. Allsop et al., “Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments,” Progress in Photovoltaics, vol. 18, no. 6, pp. 411–433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. K. Sarkar, J. Y. Kim, D. N. Goldstein et al., “In2S3 atomic layer deposition and its application as a sensitizer on TiO2 nanotube arrays for solar energy conversion,” Journal of Physical Chemistry C, vol. 114, no. 17, pp. 8032–8039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. He, D. Li, G. Xiao et al., “A new application of nanocrystal In2S3 in efficient degradation of organic pollutants under visible light irradiation,” Journal of Physical Chemistry C, vol. 113, no. 13, pp. 5254–5262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Gao, J. Li, Z. Shan, F. Huang, and H. Shen, “Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite,” Materials Chemistry and Physics, vol. 122, no. 1, pp. 183–187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chemical Reviews, vol. 107, no. 4, pp. 1324–1338, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. D. Deng, M. Shi, F. Chen, L. Chen, X. Jiang, and H. Chen, “Preparation and photo-induced charge transfer of the composites based on 3D structural CdS nanocrystals and MEH-PPV,” Solar Energy, vol. 84, no. 5, pp. 771–776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Scopus
  9. M. K. Nazeeruddin, P. Péchy, T. Renouard et al., “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” Journal of the American Chemical Society, vol. 123, no. 8, pp. 1613–1624, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, “Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole,” Solar Energy Materials and Solar Cells, vol. 55, no. 1-2, pp. 113–125, 1998. View at Scopus
  11. L. Schmidt-Mende, U. Bach, R. Humphry-Baker et al., “Organic dye for highly efficient solid-state dye-sensitized solar cells,” Advanced Materials, vol. 17, no. 7, pp. 813–815, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Nanu, J. Schoonman, and A. Goossens, “Solar-energy conversion in TiO2/CuInS2 nanocomposites,” Advanced Functional Materials, vol. 15, no. 1, pp. 95–100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. T. T. John, M. Mathew, C. S. Kartha, K. P. Vijayakumar, T. Abe, and Y. Kashiwaba, “CuInS2/In2S3 thin film solar cell using spray pyrolysis technique having 9.5% efficiency,” Solar Energy Materials and Solar Cells, vol. 89, no. 1, pp. 27–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. C. W. Bates, K. F. Nelson, S. A. Raza et al., “Spray pyrolysis and heat treatment of CuInSe2 for photovoltaic applications,” Thin Solid Films, vol. 88, no. 3, pp. 279–283, 1982. View at Scopus
  15. M. Nanu, J. Schoonman, and A. Goossens, “Nanocomposite three-dimensional solar cells obtained by chemical spray deposition,” Nano Letters, vol. 5, no. 9, pp. 1716–1719, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. S. Aukkaravittayapun, N. Wongtida, T. Kasecwatin, S. Charojrochkul, K. Unnanon, and P. Chindaudom, “Large scale F-doped SnO2 coating on glass by spray pyrolysis,” Thin Solid Films, vol. 496, no. 1, pp. 117–120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Revathi, P. Prathap, R. W. Miles, and K. T. Ramakrishna Reddy, “Annealing effect on the physical properties of evaporated In2S3 films,” Solar Energy Materials and Solar Cells, vol. 94, no. 9, pp. 1487–1491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. T. T. John, S. Bini, Y. Kashiwaba et al., “Characterization of spray pyrolysed indium sulfide thin films,” Semiconductor Science and Technology, vol. 18, no. 6, pp. 491–500, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Barreau, A. Mokrani, F. Couzinié-Devy, and J. Kessler, “Bandgap properties of the indium sulfide thin-films grown by co-evaporation,” Thin Solid Films, vol. 517, no. 7, pp. 2316–2319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. W. T. Kim and C. D. Kim, “Optical energy gaps of β-In2S3 thin films grown by spray pyrolysis,” Journal of Applied Physics, vol. 60, no. 7, pp. 2631–2633, 1986. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Barreau, “Indium sulfide and relatives in the world of photovoltaics,” Solar Energy, vol. 83, no. 3, pp. 363–371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Sterner, J. Malmström, and L. Stolt, “Study on ALD In2S3/Cu(In, Ga)Se2 interface formation,” Progress in Photovoltaics, vol. 13, no. 3, pp. 179–193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Kambas, J. Spyridelis, and M. Balkanski, “Far infrared and raman optical study of α- and β-In2S3 compounds,” Physica Status Solidi, vol. 105, no. 1, pp. 291–296, 1981.
  24. H. Tao, H. Zang, G. Dong, J. Zeng, and X. Zhao, “Raman and infrared spectroscopic study of the defect spinel In21.333S32,” Optoelectronics and Advanced Materials, Rapid Communications, vol. 2, no. 6, pp. 356–359, 2008. View at Scopus
  25. M. Repková, P. Němec, and M. Frumar, “Structure and thermal properties of Ge–In–S chalcogenide glasses,” Journal of Optoelectronics and Advanced Materials, vol. 8, no. 5, pp. 1796–1800, 2006. View at Scopus