About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2012 (2012), Article ID 794876, 7 pages
http://dx.doi.org/10.1155/2012/794876
Research Article

Effect of the Phosphorus Gettering on Si Heterojunction Solar Cells

1Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-gu, Seoul 136-713, Republic of Korea
2Department of Electronic Materials Engineering, Silla University, San1-1, Guebup-Dong, Sasang-gu, Busan 617-736, Republic of Korea
3KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea

Received 9 November 2011; Accepted 17 December 2011

Academic Editor: Junsin Yi

Copyright © 2012 Hyomin Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

To improve the efficiency of crystalline silicon solar cells, should be collected the excess carrier as much as possible. Therefore, minimizing the recombination both at the bulk and surface regions is important. Impurities make recombination sites and they are the major reason for recombination. Phosphorus (P) gettering was introduced to reduce metal impurities in the bulk region of Si wafers and then to improve the efficiency of Si heterojunction solar cells fabricated on the wafers. Resistivity of wafers was measured by a four-point probe method. Fill factor of solar cells was measured by a solar simulator. Saturation current and ideality factor were calculated from a dark current density-voltage graph. External quantum efficiency was analyzed to assess the effect of P gettering on the performance of solar cells. Minority bulk lifetime measured by microwave photoconductance decay increases from 368.3 to 660.8 μs. Open-circuit voltage and short-circuit current density increase from 577 to 598 mV and 27.8 to 29.8 mA/cm2, respectively. The efficiency of solar cells increases from 11.9 to 13.4%. P gettering will be feasible to improve the efficiency of Si heterojunction solar cells fabricated on P-doped Si wafers.