About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2012 (2012), Article ID 897595, 5 pages
http://dx.doi.org/10.1155/2012/897595
Research Article

Airbrush Spray Coating of Amorphous Titanium Dioxide for Inverted Polymer Solar Cells

Department of Electronic Engineering, (Centre for Hybrid and Organic Solar Energy), CHOSE, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy

Received 25 September 2012; Revised 17 October 2012; Accepted 18 October 2012

Academic Editor: Vincenzo Augugliaro

Copyright © 2012 Luca La Notte et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Espinosa, M. Hösel, D. Angmo, and F. C. Krebs, “Solar cells with one-day energy payback for the factories of the future,” Energy and Environmental Science, vol. 5, no. 1, pp. 5117–5132, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Kaltenbrunner, M. S. White, E. D. Głowacki et al., “Ultrathin and lightweight organic solar cells with high flexibility,” Nature Communications, vol. 3, article 1772, p. 770, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Zhou, F. Li, S. Barrau, W. Tian, O. Inganäs, and F. Zhang, “Inverted and transparent polymer solar cells prepared with vacuum-free processing,” Solar Energy Materials and Solar Cells, vol. 93, no. 4, pp. 497–500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Colsmann, M. Reinhard, T.-H. Kwon et al., “Inverted semi-transparent organic solar cells with spray coated, surfactant free polymer top-electrodes,” Solar Energy Materials and Solar Cells, vol. 98, pp. 118–123, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Albrecht, S. Schäfer, I. Lange et al., “Light management in PCPDTBT:PC70BM solar cells: a comparison of standard and inverted device structures,” Organic Electronics, vol. 13, no. 4, pp. 615–622, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Sun, J. Weickert, H. C. Hesse, and L. Schmidt-Mende, “UV light protection through TiO2 blocking layers for inverted organic solar cells,” Solar Energy Materials and Solar Cells, vol. 95, no. 12, pp. 3450–3454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. P. De Jong, L. J. Van Ijzendoorn, and M. J. A. De Voigt, “Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes,” Applied Physics Letters, vol. 77, no. 14, pp. 2255–2257, 2000. View at Scopus
  8. M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Solar Energy Materials and Solar Cells, vol. 92, no. 7, pp. 686–714, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer,” Applied Physics Letters, vol. 1, no. 4, Article ID 173303, 2008. View at Scopus
  10. J. E. Lewis, E. Lafalce, P. Toglia, and X. Jiang, “Over 30% transparency large area inverted organic solar array by spray,” Solar Energy Materials and Solar Cells, vol. 95, no. 10, pp. 2816–2822, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. P. S. Shinde, S. B. Sadale, P. S. Patil et al., “Properties of spray deposited titanium dioxide thin films and their application in photoelectrocatalysis,” Solar Energy Materials and Solar Cells, vol. 92, no. 3, pp. 283–290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Baroch, J. Musil, J. Vlcek, K. H. Nam, and J. G. Han, “Reactive magnetron sputtering of TiOX films,” Surface and Coatings Technology, vol. 193, no. 1–3, pp. 107–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films, vol. 371, no. 1, pp. 126–131, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Sasajima, S. Uesaka, T. Kuwabara, T. Yamaguchi, and K. Takahashi, “Flexible inverted polymer solar cells containing an amorphous titanium oxide electron collection electrode,” Organic Electronics, vol. 12, no. 1, pp. 113–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Kuwabara, H. Sugiyama, T. Yamaguchi, and K. Takahashi, “Inverted type bulk-heterojunction organic solar cell using electrodeposited titanium oxide thin films as electron collector electrode,” Thin Solid Films, vol. 517, no. 13, pp. 3766–3769, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Karuppuchamy and J. M. Jeong, “Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition,” Materials Chemistry and Physics, vol. 93, no. 2-3, pp. 251–254, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Kuwabara, H. Sugiyama, M. Kuzuba, T. Yamaguchi, and K. Takahashi, “Inverted bulk-heterojunction organic solar cell using chemical bath deposited titanium oxide as electron collection layer,” Organic Electronics, vol. 11, no. 6, pp. 1136–1140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Susanna, L. Salamandra, T. M. Brown, A. Di Carlo, F. Brunetti, and A. Reale, “Airbrush spray-coating of polymer bulk-heterojunction solar cells,” Solar Energy Materials and Solar Cells, vol. 95, no. 7, pp. 1775–1778, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. K. X. Steirer, M. O. Reese, B. L. Rupert et al., “Ultrasonic spray deposition for production of organic solar cells,” Solar Energy Materials and Solar Cells, vol. 93, no. 4, pp. 447–453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Weickert, H. Sun, C. Palumbiny, H. C. Hesse, and L. Schmidt-Mende, “Spray-deposited PEDOT:PSS for inverted organic solar cells,” Solar Energy Materials and Solar Cells, vol. 94, no. 12, pp. 2371–2374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K. J. Kim, Y. S. Kim, W. S. Kang et al., “Inspection of substrate-heated modified PEDOT:PSS morphology for all spray deposited organic photovoltaics,” Solar Energy Materials and Solar Cells, vol. 94, no. 7, pp. 1303–1306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J.-W. Kang, Y.-J. Kang, S. Jung et al., “Fully spray-coated inverted organic solar cells,” Solar Energy Materials and Solar Cells, vol. 103, pp. 76–79, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Bradshaw and A. J. Hughes, “Etching methods for indium oxide/tin oxide films,” Thin Solid Films, vol. 33, no. 2, pp. L5–L8, 1976. View at Scopus
  24. S. Ito, M. K. Nazeeruddin, P. Liska et al., “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Progress in Photovoltaics, vol. 14, no. 7, pp. 589–601, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Zardetto, T. M. Brown, A. Reale, and A. Di Carlo, “Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties,” Journal of Polymer Science B, vol. 49, no. 9, pp. 638–648, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Mincuzzi, M. Schulz-Ruhtenberg, L. Vesce et al., “Laser processing of TiO2 films for dye solar cells: a thermal, sintering, throughput and embodied energy investigation,” Progress in Photovoltaics. In press. View at Publisher · View at Google Scholar
  27. C. Y. Li, T. C. Wen, T. H. Lee et al., “An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers,” Journal of Materials Chemistry, vol. 19, no. 11, pp. 1643–1647, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Y. Kim, S. H. Kim, H. H. Lee et al., “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Advanced Materials, vol. 18, no. 5, pp. 572–576, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Waldauf, M. Morana, P. Denk et al., “Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact,” Applied Physics Letters, vol. 89, no. 23, Article ID 233517, 2006. View at Publisher · View at Google Scholar · View at Scopus