About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2013 (2013), Article ID 167895, 9 pages
http://dx.doi.org/10.1155/2013/167895
Research Article

Drying of Malaysian Capsicum annuum L. (Red Chili) Dried by Open and Solar Drying

Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Received 28 September 2012; Accepted 7 January 2013

Academic Editor: Sih-Li Chen

Copyright © 2013 Ahmad Fudholi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. H. Norziah and C. Y. Ching, “Nutritional composition of edible seaweed Gracilaria changgi,” Food Chemistry, vol. 68, no. 1, pp. 69–76, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. A. H. Simonne, E. H. Simonne, R. R. Eitenmiller, H. A. Mills, and N. R. Green, “Ascorbic acid and provitamin A contents in unusually colored bell peppers (Capsicum annuum L.),” Journal of Food Composition and Analysis, vol. 10, no. 4, pp. 299–311, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. J. L. Guil-Guerrero, C. Martínez-Guirado, M. M. Rebolloso-Fuentes, and A. Carrique-Pérez, “Nutrient composition and antioxidant activity of 10 pepper (Capsicum annuun) varieties,” European Food Research and Technology, vol. 224, no. 1, pp. 1–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. O. Dissa, J. Bathiebo, S. Kam, P. W. Savadogo, H. Desmorieux, and J. Koulidiati, “Modelling and experimental validation of thin layer indirect solar drying of mango slices,” Renewable Energy, vol. 34, no. 4, pp. 1000–1008, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Aktaş, I. Ceylan, and S. Yilmaz, “Determination of drying characteristics of apples in a heat pump and solar dryer,” Desalination, vol. 238, no. 1–3, pp. 266–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. P. F. Guiné, D. M. S. Ferreira, M. J. Barroca, and F. M. Gonçalves, “Study of the drying kinetics of solar-dried pears,” Biosystems Engineering, vol. 98, no. 4, pp. 422–429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. O. Dissa, D. J. Bathiebo, H. Desmorieux, O. Coulibaly, and J. Koulidiati, “Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes,” Energy, vol. 36, no. 5, pp. 2517–2527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. B. M. A. Amer, M. A. Hossain, and K. Gottschalk, “Design and performance evaluation of a new hybrid solar dryer for banana,” Energy Conversion and Management, vol. 51, no. 4, pp. 813–820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. E. K. Akpinar, “Drying of mint leaves in a solar dryer and under open sun: modelling, performance analyses,” Energy Conversion and Management, vol. 51, no. 12, pp. 2407–2418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Akbulut and A. Durmuş, “Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer,” Energy, vol. 35, no. 4, pp. 1754–1763, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. F. Basri, A. Fudholi, and M. H. Ruslan, “Drying characteristics of the borneo Canarium odontophyllum (dabai) fruit,” The American Journal of Agricultural and Biological Science, vol. 7, no. 3, pp. 347–356, 2012. View at Publisher · View at Google Scholar
  12. B. R. Chavan, A. Yakupitiyage, and S. Kumar, “Drying performance, quality characteristics, and financial evaluation of Indian Mackerel (Rastrilliger kangurta) dried by a solar tunnel dryer,” Thammasat International Journal of Science and Technology, vol. 16, no. 2, pp. 11–25, 2011. View at Scopus
  13. G. M. Kituu, D. Shitanda, C. L. Kanali et al., “Thin layer drying model for simulating the drying of Tilapia fish (Oreochromis niloticus) in a solar tunnel dryer,” Journal of Food Engineering, vol. 98, no. 3, pp. 325–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Fudholi, M. Y. Othman, M. H. Ruslan, M. Yahya, A. Zaharim, and K. Sopian, “Techno-economic analysis of solar drying system for seaweed in Malaysia,” in Procceedings of the 7th IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development (EEESD '11), pp. 89–95, 2011.
  15. A. Fudholi, K. Sopian, M. H. Ruslan, M. A. Alghoul, and M. Y. Sulaiman, “Review of solar dryers for agricultural and marine products,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 1–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Janjai, P. Intawee, J. Kaewkiew, C. Sritus, and V. Khamvongsa, “A large-scale solar greenhouse dryer using polycarbonate cover: modeling and testing in a tropical environment of Lao People's Democratic Republic,” Renewable Energy, vol. 36, no. 3, pp. 1053–1062, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Kaewkiew, S. Nabneaan, and S. Janjai, “Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand,” Procedia Engineering, vol. 32, pp. 433–439, 2012.
  18. T. Lhendup, “Technical and financial feasibility of a solar dryer in Bhutan,” Energy for Sustainable Development, vol. 9, no. 4, pp. 17–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Hossain and B. K. Bala, “Drying of hot chilli using solar tunnel drier,” Solar Energy, vol. 81, no. 1, pp. 85–92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. Hossain, J. L. Woods, and B. K. Bala, “Optimisation of solar tunnel drier for drying of chilli without color loss,” Renewable Energy, vol. 30, no. 5, pp. 729–742, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Banout, P. Ehl, J. Havlik, B. Lojka, Z. Polesny, and V. Verner, “Design and performance evaluation of a Double-pass solar drier for drying of red chilli (Capsicum annum L.),” Solar Energy, vol. 85, no. 3, pp. 506–515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. A. El-Sebaii, S. Aboul-Enein, M. R. I. Ramadan, S. M. Shalaby, and B. M. Moharram, “Thermal performance investigation of double pass-finned plate solar air heater,” Applied Energy, vol. 88, no. 5, pp. 1727–1739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Banout and P. Ehl, “Using a double-pass solar drier for drying of bamboo shoots,” Journal of Agriculture and Rural Development in the Tropics and Subtropics, vol. 111, no. 2, pp. 119–127, 2010.
  24. K. E. J. Al-Juamily, A. J. N. Khalifa, and T. A. Yassen, “Testing of the performance of a fruit and vegetable solar drying system in Iraq,” Desalination, vol. 209, no. 1–3, pp. 163–170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. H. Ruslan, A. Fudholi, M. Y. Othman et al., “The double-pass solar dryer for drying palm oil fronds,” in Proceedings of the 10th WSEAS international conference on System science and simulation in engineering (ICOSSSE '11), pp. 143–149, Penang, Malaysia, 2011.
  26. Y. Jannot and Y. Coulibaly, “the “evaporative capacity” as a performance index for a solar-drier air-heater,” Solar Energy, vol. 63, no. 6, pp. 387–391, 1998. View at Scopus
  27. S. Desai, V. Palled, and M. Anantachar, “Performance evaluation of farm solar dryer for chilly drying,” Karnataka Journal of Agricultural Sciences, vol. 22, no. 2, pp. 382–384, 2009.
  28. V. Shanmugam and E. Natarajan, “Experimental investigation of forced convection and desiccant integrated solar dryer,” Renewable Energy, vol. 31, no. 8, pp. 1239–1251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Meziane, “Drying kinetics of olive pomace in a fluidized bed dryer,” Energy Conversion and Management, vol. 52, no. 3, pp. 1644–1649, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Ibrahim, K. Sopian, and W. R. W. Daud, “Study of the drying kinetics of Lemon grass,” The American Journal of Applied Sciences, vol. 6, no. 6, pp. 1070–1075, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Y. Othman, A. Fudholi, K. Sopian, M. H. Ruslan, and M. Yahya, “Analisis kinetik pengeringan rumpai laut Gracilaria cangii menggunakan sistem pengering suria (drying kinetics analysis of seaweed Gracilaria cangii using solar drying system),” Sains Malaysiana, vol. 41, no. 2, pp. 245–252, 2012.
  32. A. Fudholi, M. Y. Othman, M. H. Ruslan, M. Yahya, A. Zaharim, and K. Sopian, “The effects of drying air temperature and humidity on drying kinetics of seaweed,” in Recent Research in Geography, Geology, Energy, Environment and Biomedicine, pp. 129–133, Corfu, Greece, 2011.
  33. A. Fudholi, M. Y. Othman, M. H. Ruslan, M. Yahya, A. Zaharim, and K. Sopian, “Design and testing of solar dryer for drying kinetics of seaweed in Malaysia,” in Recent Research in Geography, Geology, Energy, Environment and Biomedicine, pp. 119–124, Corfu, Greece, 2011.
  34. A. Fudholi, M. H. Ruslan, L. C. Haw et al., “Mathematical modeling of brown seaweed drying curves,” in Proceedings of the WSEAS International Conference on Applied Mathematics in Electrical and Computer Engineering, pp. 207–211, 2012.
  35. M. Mohanraj and P. Chandrasekar, “Performance of a forced convection solar drier integrated with gravel as heat storage material for chili drying,” Journal of Engineering Science and Technology, vol. 4, no. 3, pp. 305–314, 2009. View at Scopus
  36. S. Kaleemullah and R. Kailappan, “Drying kinetics of red chillies in a rotary dryer,” Biosystems Engineering, vol. 92, no. 1, pp. 15–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. P. M. Azoubel, M. D. A. M. Baima, M. D. R. Amorim, and S. S. B. Oliveira, “Effect of ultrasound on banana cv Pacovan drying kinetics,” Journal of Food Engineering, vol. 97, no. 2, pp. 194–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Y. Tunde-Akintunde, “Mathematical modeling of sun and solar drying of chilli pepper,” Renewable Energy, vol. 36, no. 8, pp. 2139–2145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Doymaz and M. Pala, “Hot-air drying characteristics of red pepper,” Journal of Food Engineering, vol. 55, no. 4, pp. 331–335, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. L. A. Duc, J. W. Han, and D. H. Keum, “Thin layer drying characteristics of rapeseed (Brassica napus L.),” Journal of Stored Products Research, vol. 47, no. 1, pp. 32–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Doymaz, “Drying behaviour of green beans,” Journal of Food Engineering, vol. 69, no. 2, pp. 161–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. I. Doymaz, “Drying characteristics and kinetics of okra,” Journal of Food Engineering, vol. 69, no. 3, pp. 275–279, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Simal, A. Femenia, M. C. Garau, and C. Rosselló, “Use of exponential, Page's and diffusional models to simulate the drying kinetics of kiwi fruit,” Journal of Food Engineering, vol. 66, no. 3, pp. 323–328, 2005. View at Publisher · View at Google Scholar · View at Scopus