About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2013 (2013), Article ID 217526, 10 pages
http://dx.doi.org/10.1155/2013/217526
Research Article

Sizing and Simulation of PV-Wind Hybrid Power System

Ege Higher Vocational School, Department of Electronics Technology, Ege University, 35100 Izmir, Turkey

Received 9 October 2012; Revised 29 December 2012; Accepted 10 February 2013

Academic Editor: Mohammad A. Behnajady

Copyright © 2013 Mustafa Engin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Solarbuzz. Retail Price Summary, 2012, http://www.solarbuzz.com/facts-and-figures/retail-price-environment/module-prices.
  2. GWEC. Global Wind Energy Outlook, 2012, http://www.gwec.net/wp-content/uploads/2012/11/GWEO_2012_lowRes.pdf.
  3. T. Cronin, H. Bindner, P. Lundsager, and O. Gehrke, “Hybrid system performance evaluation,” in Proceedings of the 27th European Wind Energy Conference, Athens, Grece, 2006.
  4. A. Batman, F. G. Bagriyanik, Z. E. Aygen, Ö. Gül, and M. Bagriyanik, “A feasibility study of grid-connected photovoltaic systems in Istanbul, Turkey,” Renewable and Sustainable Energy Reviews, vol. 16, no. 8, pp. 5678–5686, 2012. View at Publisher · View at Google Scholar
  5. G. Bekele and B. Palm, “Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia,” Applied Energy, vol. 87, no. 2, pp. 487–495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. J. Dalton, D. A. Lockington, and T. E. Baldock, “Feasibility analysis of stand-alone renewable energy supply options for a large hotel,” Renewable Energy, vol. 33, no. 7, pp. 1475–1490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Khan and M. T. Iqbal, “Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland,” Renewable Energy, vol. 30, no. 6, pp. 835–854, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Lalwani, D. P. Kothari, and M. Singh, “Viability analysis by techno-economic aspects of grid interactive solar photovoltaic project in indiaon,” in Proceedings of the International Conference on Advances in Engineering, Science and Management (ICAESM '12), 2012.
  9. R. Luna-Rubio, M. Trejo-Perea, D. Vargas-Vázquez, and G. J. Ríos-Moreno, “Optimal sizing of renewable hybrids energy systems: a review of methodologies,” Solar Energy, vol. 86, no. 4, pp. 1077–1088, 2012. View at Publisher · View at Google Scholar
  10. S. M. Shaahid and M. A. Elhadidy, “Technical and economic assessment of grid-independent hybrid photovoltaic-diesel-battery power systems for commercial loads in desert environments,” Renewable and Sustainable Energy Reviews, vol. 11, no. 8, pp. 1794–1810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. E. I. Zoulias and N. Lymberopoulos, “Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems,” Renewable Energy, vol. 32, no. 4, pp. 680–696, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. L. Bernal-Agustín and R. Dufo-López, “Simulation and optimization of stand-alone hybrid renewable energy systems,” Renewable and Sustainable Energy Reviews, vol. 13, no. 8, pp. 2111–2118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. N. Celik, “Optimisation and techno-economic analysis of autonomous photovoltaic-wind hybrid energy systems in comparison to single photovoltaic and wind systems,” Energy Conversion and Management, vol. 43, no. 18, pp. 2453–2468, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. M. K. Deshmukh and S. S. Deshmukh, “Modeling of hybrid renewable energy systems,” Renewable and Sustainable Energy Reviews, vol. 12, no. 1, pp. 235–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Diaf, G. Notton, M. Belhamel, M. Haddadi, and A. Louche, “Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions,” Applied Energy, vol. 85, no. 10, pp. 968–987, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Giraud and Z. M. Salameh, “Steady-state performance of a grid-connected rooftop hybrid wind—photovoltaic power system with battery storage,” IEEE Transactions on Energy Conversion, vol. 16, no. 1, pp. 1–7, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Gupta, R. P. Saini, and M. P. Sharma, “Steady-state modelling of hybrid energy system for off grid electrification of cluster of villages,” Renewable Energy, vol. 35, no. 2, pp. 520–535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Koutroulis, D. Kolokotsa, A. Potirakis, and K. Kalaitzakis, “Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms,” Solar Energy, vol. 80, no. 9, pp. 1072–1088, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. P. McHenry, “Are small-scale grid-connected photovoltaic systems a cost-effective policy for lowering electricity bills and reducing carbon emissions A technical, economic, and carbon emission analysis,” Energy Policy, vol. 45, pp. 64–72, 2012. View at Publisher · View at Google Scholar
  20. A. N. Celik, “Techno-economic analysis of autonomous PV-wind hybrid energy systems using different sizing methods,” Energy Conversion and Management, vol. 44, no. 12, pp. 1951–1968, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. K. H. Park, C. U. Kang, G. M. Lee, and J. H. Lim, “Design of optimal combination for new and renewable hybrid generation system,” Communications in Computer and Information Science, vol. 266, pp. 189–198, 2011. View at Publisher · View at Google Scholar
  22. S. Sayeef, N. Mendis, and K. Muttaqi, “Optimisation of component sizes for a hybrid remote area power supply system,” in Proceedings of the 19th Australasian Universities Power Engineering Conference: Sustainable Energy Technologies and Systems (AUPEC '09), IEEE, September 2009. View at Scopus
  23. H. Yang, Z. Wei, and L. Chengzhi, “Optimal design and techno-economic analysis of a hybrid solar-wind power generation system,” Applied Energy, vol. 86, no. 2, pp. 163–169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. G. M. Tina and S. Gagliano, “Probabilistic modelling of hybrid solar/wind power system with solar tracking system,” Renewable Energy, vol. 36, no. 6, pp. 1719–1727, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Ulgen and A. Hepbasli, “A study on evaluating the power generation of solar-wind hybrid systems in Izmir, Turkey,” Energy Sources, vol. 25, no. 3, pp. 241–252, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. Siemens. SM 10 solar module, 2012, http://www.siemen.co.uk/sm10.html.
  27. Exide. Sonnenschein Batterien, 12V, 10AH, 2012, http://www.farnell.com/datasheets/332192.pdf.
  28. A. McEvoy, T. Markvart, and L. Castañer, Practical Handbook of Photovoltaics : Fundamentals and Applications, Academic Press, Amsterdam, The Netherlands, 2012.
  29. C. Luis and S. Silvester, Modeling Photovoltaic Systems Using Pspice, John Wiley & Sons, 2002.
  30. A. D. Hansen, P. Sorensen, L. H. Hansen, and H. Binder, “Models for a stand-alone PV system,” Tech. Rep., Risø National Laboratory, Roskilde, Denmark, 2001.
  31. N. A. Orlando, M. Liserre, V. G. Monopoli, R. A. Mastromauro, and A. Del'Aquila, “Comparison of power converter topologies for permanent magnet small wind turbine system,” in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE '08), pp. 2359–2364, July 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. B. Cultura and Z. M. Salameh, “Modeling and simulation of a wind turbine-generator system,” in Power and Energy Society General Meeting, IEEE, 2011.
  33. O. Tremblay, L. A. Dessaint, and A. I. Dekkiche, “A generic battery model for the dynamic simulation of hybrid electric vehicles,” in Vehicle Power and Propulsion Conference (VPPC '07), pp. 284–289, IEEE, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Engin, Güneş-Rüzgâr Hibrid Enerji ile su Pompalama.
  35. G. C. Seeling-Hochmuth, Optimization of Hybrid Energy Systems Sizing and Operation Control, University of Kassel, 1998.
  36. T. Senjyu, D. Hayashi, N. Urasaki, and T. Funabashi, “Optimum configuration for renewable generating systems in residence using genetic algorithm,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 459–466, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. MATLAB. MATLAB/SIMULINK, 2012, R2012b:[MATLAB is a high-level language and interactive environment for numerical computation, visualization, and programming], http://www.mathworks.com/.
  38. I. E. Commission, International Standard IEC 61724: Photovoltaic System Performance Monitoring—Guidelines for Measurements, Data Exchange and Analysis, IEC, 1998.
  39. L. Arribas, L. Cano, I. Cruz, M. Mata, and E. Llobet, “PV-wind hybrid system performance: a new approach and a case study,” Renewable Energy, vol. 35, no. 1, pp. 128–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. V. M. Fthenakis and H. C. Kim, “Photovoltaics: life-cycle analyses,” Solar Energy, vol. 85, no. 8, pp. 1609–1628, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Peng, L. Lu, and H. Yang, “Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems,” Renewable and Sustainable Energy Reviews, vol. 19, no. 0, pp. 255–274, 2013.
  42. A. Stoppato, “Life cycle assessment of photovoltaic electricity generation,” Energy, vol. 33, no. 2, pp. 224–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. H. L. Raadal, L. Gagnon, I. S. Modahl, and O. J. Hanssen, “Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power,” Renewable and Sustainable Energy Reviews, vol. 15, no. 7, pp. 3417–3422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. EPDK. Elektrik Piyasası Raporu 2011, 2012, http://www.epdk.org.tr/index.php/elektrik-piyasasi/yayinlar-raporlar.
  45. I. P. Panapakidis, D. N. Sarafianos, and M. C. Alexiadis, “Comparative analysis of different grid-independent hybrid power generation systems for a residential load,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 551–563, 2012.
  46. R. Dufo-López, J. L. Bernal-Agustín, J. M. Yusta-Loyo et al., “Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV-wind-diesel systems with batteries storage,” Applied Energy, vol. 88, no. 11, pp. 4033–4041, 2011. View at Publisher · View at Google Scholar · View at Scopus