About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2013 (2013), Article ID 439079, 9 pages
http://dx.doi.org/10.1155/2013/439079
Research Article

Preparation of N- Using a Microwave/Sol-Gel Method and Its Photocatalytic Activity for Bisphenol A under Visible-Light and Sunlight Irradiation

1Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80778, Taiwan
2Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
3Department of Environmental Engineering, National Ilan University, Ilan 26041, Taiwan

Received 20 November 2012; Revised 4 January 2013; Accepted 13 January 2013

Academic Editor: Mahmoud M. El-Nahass

Copyright © 2013 Chung-Hsin Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. Staples, P. B. Dorn, G. M. Klecka, S. T. O'Block, and L. R. Harris, “A review of the environmental fate, effects, and exposures of bisphenol A,” Chemosphere, vol. 36, no. 10, pp. 2149–2173, 1998. View at Publisher · View at Google Scholar
  2. J. A. Brotons, M. F. Olea-Serrano, M. Villalobos, V. Pedraza, and N. Olea, “Xenoestrogens released from lacquer coatings in food cans,” Environmental Health Perspectives, vol. 103, no. 6, pp. 608–612, 1995. View at Scopus
  3. W. Ho, J. C. Yu, and S. Lee, “Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity,” Journal of Solid State Chemistry, vol. 179, no. 4, pp. 1171–1176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Szatmáry, S. Bakardjieva, J. Subrt et al., “Sulphur doped nanoparticles of TiO2,” Catalysis Today, vol. 161, no. 1, pp. 23–28, 2011. View at Publisher · View at Google Scholar
  5. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Silveyra, L. T. Saenz, W. A. Flores, V. C. Martınez, and A. A. Elguezabal, “Doping of TiO2 with nitrogen to modify the interval of photocatalytic activation towards visible radiation,” Catalysis Today, vol. 107, pp. 602–605, 2005. View at Publisher · View at Google Scholar
  7. Y. Ma, J. Zhang, B. Tian, F. Chen, and L. Wang, “Synthesis and characterization of thermally stable Sm,N co-doped TiO2 with highly visible light activity,” Journal of Hazardous Materials, vol. 182, no. 1–3, pp. 386–393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Irmak, O. Erbatur, and A. Akgerman, “Degradation of 17β-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques,” Journal of Hazardous Materials, vol. 126, no. 1–3, pp. 54–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Debordea, S. Rabouana, P. Mazelliera, J. P. Duguetc, and B. Legubea, “Oxidation of bisphenol A by ozone in aqueous solution,” Water Research, vol. 42, no. 16, pp. 4299–4308, 2008. View at Publisher · View at Google Scholar
  10. T. Nakashima, Y. Ohko, D. A. Tryk, and A. Fujishima, “Decomposition of endocrine-disrupting chemicals in water by use of TiO2 photocatalysts immobilized on polytetrafluoroethylene mesh sheets,” Journal of Photochemistry and Photobiology A, vol. 151, no. 1–3, pp. 207–212, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Watanabe, S. Horikoshi, H. Kawabe, Y. Sugie, J. Zhao, and H. Hidaka, “Photodegradation mechanism for bisphenol A at the TiO2/H2O interfaces,” Chemosphere, vol. 52, no. 5, pp. 851–859, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Chiang, T. M. Lim, L. Tsen, and C. C. Lee, “Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2,” Applied Catalysis A, vol. 261, no. 2, pp. 225–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. B. Xie and X. Z. Li, “Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation,” Journal of Hazardous Materials, vol. 138, no. 3, pp. 526–533, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. A. Torres-Palma, J. I. Nieto, E. Combet, C. Pétrier, and C. Pulgarin, “An innovative ultrasound, Fe2+ and TiO2 photoassisted process for bisphenol a mineralization,” Water Research, vol. 44, no. 7, pp. 2245–2252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Wang, D. Ren, S. Xia, Y. Zhang, and J. Zhao, “Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR),” Journal of Hazardous Materials, vol. 169, no. 1–3, pp. 926–932, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Y. Kuo, C. H. Wu, and H. Y. Lin, “Photocatalytic degradation of bisphenol A in a visible light/TiO2 system,” Desalination, vol. 256, no. 1–3, pp. 37–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Yang, J. Dai, and J. Li, “Synthesis, characterization and degradation of Bisphenol A using Pr, N co-doped TiO2 with highly visible light activity,” Applied Surface Science, vol. 257, no. 21, pp. 8965–8973, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Kaneco, M. A. Rahman, T. Suzuki, H. Katsumata, and K. Ohta, “Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide,” Journal of Photochemistry and Photobiology A, vol. 163, no. 3, pp. 419–424, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Gao, T. M. Lim, D. P. Subagio, and T. T. Lim, “Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A,” Applied Catalysis A, vol. 375, no. 1, pp. 107–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Katsumata, S. Kawabe, S. Kaneco, T. Suzuki, and K. Ohta, “Degradation of bisphenol A in water by the photo-Fenton reaction,” Journal of Photochemistry and Photobiology A, vol. 162, no. 2-3, pp. 297–305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Ioan, S. Wilson, E. Lundanes, and A. Neculai, “Comparison of Fenton and sono-Fenton bisphenol a degradation,” Journal of Hazardous Materials, vol. 142, no. 1-2, pp. 555–558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Inoue, Y. Masuda, F. Okada, A. Sakurai, I. Takahashi, and M. Sakakibara, “Degradation of bisphenol A using sonochemical reactions,” Water Research, vol. 42, no. 6-7, pp. 1379–1386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. A. Torres, C. Pétrier, E. Combet, M. Carrier, and C. Pulgarin, “Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products,” Ultrasonics Sonochemistry, vol. 15, no. 4, pp. 605–611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Wang and T. T. Lim, “Solvothermal synthesis of C-N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor,” Applied Catalysis B, vol. 100, no. 1-2, pp. 355–364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Wang and T. T. Lim, “Effect of hexamethylenetetramine on the visible-light photocatalytic activity of C-N codoped TiO2 for bisphenol A degradation: evaluation of photocatalytic mechanism and solution toxicity,” Applied Catalysis A, vol. 399, no. 1-2, pp. 233–241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. D. V. Sojic, V. N. Despotovic, N. D. Abazovic, M. I. Comor, and B. F. Abramovic, “Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation,” Journal of Hazardous Materials, vol. 179, no. 1–3, pp. 49–56, 2010. View at Publisher · View at Google Scholar
  27. R. A. Spurr and H. Myers, “Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer,” Analytical Chemistry, vol. 29, no. 5, pp. 760–762, 1957. View at Scopus
  28. S. Y. Liu, Q. L. Tang, and Q. G. Feng, “Synthesis of S/Cr doped mesoporous TiO2 with high-active visible light degradation property via solid state reaction route,” Applied Surface Science, vol. 257, no. 13, pp. 5544–5551, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. T. Hussain, K. Khan, and R. Hussain, “Size control synthesis of sulfur doped titanium dioxide (anatase) nanoparticles, its optical property and its photo catalytic reactivity for CO2+H2O conversion and phenol degradation,” Journal of Natural Gas Chemistry, vol. 18, no. 4, pp. 383–391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Wang, Y. Huang, W. Ho, L. Zhang, Z. Zou, and S. Lee, “Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation,” Journal of Hazardous Materials, vol. 169, no. 1–3, pp. 77–87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Li, J. Li, and Y. Huo, “Highly active TiO2N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions,” The Journal of Physical Chemistry B, vol. 110, no. 4, pp. 1559–1565, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. J. H. Xu, W. L. Dai, J. Li et al., “Simple fabrication of thermally stable apertured N-doped TiO2 microtubes as a highly efficient photocatalyst under visible light irradiation,” Catalysis Communications, vol. 9, no. 1, pp. 146–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Cot, A. Larbot, G. Nabias, and L. Cot, “Preparation and characterization of colloidal solution derived crystallized titania powder,” Journal of the European Ceramic Society, vol. 18, no. 14, pp. 2175–2181, 1998. View at Scopus
  34. S. Hu, A. Wang, X. Li, and H. Löwe, “Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light,” Journal of Physics and Chemistry of Solids, vol. 71, no. 3, pp. 156–162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, “Enhanced nitrogen doping in TiO2 nanoparticles,” Nano Letters, vol. 3, no. 8, pp. 1049–1051, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Xing, J. Zhang, and F. Chen, “New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light,” Applied Catalysis B, vol. 89, no. 3-4, pp. 563–569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Sathish, B. Viswanathan, R. P. Viswanath, and C. S. Gopinath, “Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst,” Chemistry of Materials, vol. 17, no. 25, pp. 6349–6353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Chen and C. Burda, “Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles,” The Journal of Physical Chemistry B, vol. 108, no. 40, pp. 15446–15449, 2004. View at Publisher · View at Google Scholar
  39. J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, “Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale,” The Journal of Physical Chemistry B, vol. 108, no. 4, pp. 1230–1240, 2004. View at Scopus
  40. J. A. Rengifo-Herrera and C. Pulgarin, “Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation,” Solar Energy, vol. 84, no. 1, pp. 37–43, 2010. View at Publisher · View at Google Scholar · View at Scopus