About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2013 (2013), Article ID 670315, 7 pages
http://dx.doi.org/10.1155/2013/670315
Research Article

Preservation of Seed Crystals in Feedstock Melting for Cast Quasi-Single Crystalline Silicon Ingots

1Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
2State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
3Yingli Green Energy Holding Co., Ltd., Baoding, Hebei 071051, China

Received 29 May 2013; Accepted 12 September 2013

Academic Editor: Chun-Sheng Jiang

Copyright © 2013 Zaoyang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. C. Ma, G. X. Zhong, L. Sun, Q. H. Yu, X. M. Huang, and L. J. Liu, “Influence of an insulation partition on a seeded directional solidification process for quasi-single crystalline silicon ingot for high-efficiency solar cells,” Solar Energy Materials and Solar Cells, vol. 100, pp. 231–238, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Stoddard, W. Bei, I. Witting et al., “Casting single crystal silicon: novel defect profiles from BP solar's mono2 wafers,” Diffusion and Defect Data B, vol. 131-133, pp. 1–8, 2008. View at Scopus
  3. Q. H. Yu, L. J. Liu, W. C. Ma, G. X. Zhong, and X. M. Huang, “Local design of the hot-zone in an industrial seeded directional solidification furnace for quasi-single crystalline silicon ingots,” Journal of Crystal Growth, vol. 358, pp. 5–11, 2012. View at Publisher · View at Google Scholar
  4. A. Black, J. Medina, A. Piñeiro, and E. Dieguez, “Optimizing seeded casting of mono-like silicon crystals through numerical simulation,” Journal of Crystal Growth, vol. 353, pp. 12–16, 2012. View at Publisher · View at Google Scholar
  5. B. Gao, S. Nakano, and K. Kakimoto, “Influence of back-diffusion of iron impurity on lifetime distribution near the seed-crystal interface in seed cast-grown monocrystalline silicon by numerical modeling,” Crystal Growth and Design, vol. 12, no. 1, pp. 522–525, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Gu, X. G. Yu, K. K. Guo, L. Chen, D. Wang, and D. R. Yang, “Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: towards high efficiency and low cost silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 101, pp. 95–101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Stoddard, R. Sidhu, J. Creager et al., “Evaluating BP solar's Mono2 material: lifetime and cell electrical data,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC '09), pp. 1163–1168, Philadelphia, Pa, USA, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Witting, N. Stoddard, and G. Rozgonyi, “Defect incorporation and impurity precipitation in mono2 silicon,” in Proceedings of the 18th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes,, pp. 155–158, Vail, Colo, USA, 2008.
  9. T. Tachibana, T. Sameshima, T. Kojima et al., “Evaluation of defects generation in crystalline silicon ingot grown by cast technique with seed crystal for solar cells,” Journal of Applied Physics, vol. 111, no. 7, Article ID 074505, 2012.
  10. Y. Tsuchiya, H. Kusunoki, N. Miyazaki et al., “Correlation between carbon incorporation and defect formation in quasi-single crystalline silicon,” in Procedings of the 38th IEEE Photovoltaic Specialists Conference (PVSC '12), pp. 297–301, Austin, Tex, USA, 2012.
  11. Z. Y. Li, L. J. Liu, X. Liu, Y. F. Zhang, and J. F. Xiong, “Heat transfer in an industrial directional solidification furnace with multi-heaters for silicon ingots,” Journal of Crystal Growth, 2013. View at Publisher · View at Google Scholar
  12. L. Liu and K. Kakimoto, “Partly three-dimensional global modeling of a silicon Czochralski furnace. I. Principles, formulation and implementation of the model,” International Journal of Heat and Mass Transfer, vol. 48, no. 21-22, pp. 4481–4491, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Y. Li, L. J. Liu, X. H. Nan, and K. Kakimoto, “Role of marangoni tension effects on the melt convection in directional solidification process for multi-crystalline silicon ingots,” Journal of Crystal Growth, vol. 346, no. 1, pp. 40–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” International Journal of Heat and Mass Transfer, vol. 30, no. 8, pp. 1709–1719, 1987. View at Scopus