About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2013 (2013), Article ID 685038, 9 pages
http://dx.doi.org/10.1155/2013/685038
Research Article

The Multiple Effects of Precursors on the Properties of Polymeric Carbon Nitride

1College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
2Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067, China

Received 21 May 2013; Accepted 18 July 2013

Academic Editor: Pengyi Zhang

Copyright © 2013 Wendong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Polymeric graphitic carbon nitride (g-C3N4) materials were prepared by direct pyrolysis of thiourea, dicyandiamide, melamine, and urea under the same conditions, respectively. In order to investigate the effects of precursors on the intrinsic physicochemical properties of g-C3N4, a variety of characterization tools were employed to analyze the samples. The photocatalytic activity of the samples was evaluated by the removal of NO in gas phase under visible light irradiation. The results showed that the as-prepared CN-T (from thiourea), CN-D (from dicyandiamide), CN-M (from melamine), and CN-U (from urea) exhibited significantly different morphologies and microstructures. The band gaps of CN-T, CN-D, CN-M, and CN-U were 2.51, 2.58, 2.56, and 2.88 eV, respectively. Both thermal stability and yield are in the following order: CN-M > CN-D > CN-T > CN-U. The photoactivity of CN-U (31.9%) is higher than that of CN-T (29.6%), CN-D (22.2%), and CN-M (26.8%). Considering the cost, toxicity, and yield of the precursors and the properties of g-C3N4, the best precursor for preparation of g-C3N4 was melamine. The present work could provide new insights into the selection of suitable precursor for g-C3N4 synthesis and in-depth understanding of the microstructure-dependent photocatalytic activity of g-C3N4.