About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2013 (2013), Article ID 724502, 6 pages
http://dx.doi.org/10.1155/2013/724502
Research Article

Material Properties of Laser-Welded Thin Silicon Foils

1Bavarian Center for Applied Energy Research (ZAE Bayern), Haberstraße 2a, 91058 Erlangen, Germany
2Institute Materials for Electronics and Energy Technology (i-MEET), University of Erlangen-Nuremberg, Martensstrße 7, 91058 Erlangen, Germany
3BLZ-Bavarian Laser Center, Konrad-Zuse-Straße 2–6, 91052 Erlangen, Germany
4University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
5Max-Planck-Institute for the Science of Light, Günther-Scharowsky-Straße 1, 91058 Erlangen, Germany

Received 22 May 2013; Accepted 30 June 2013

Academic Editor: Leonardo Palmisano

Copyright © 2013 M. T. Hessmann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. T. Hessmann, T. Kunz, I. Burkert et al., “Laser process for extended silicon thin film solar cells,” Thin Solid Films, vol. 520, no. 1, pp. 595–599, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Kunz, I. Burkert, R. Auer, and M. Zimmermann, “Towards extended free-standing crystalline silicon thin-films by laser joining,” in Proceedings of the 22nd European Photovoltaic Solar Energy Conference, pp. 1946–1948, Milan, Italy, September 2007.
  3. R. Brendel, “A novel process for ultrathin monocrystalline silicon solar cells on glass,” in Proceedings of the 14th European Photovoltaic Solar Energy Conference, pp. 1354–1357, Barcelona, Spain, June 1997.
  4. H. Tayanaka, K. Yamauchi, and T. Matsushita, “Thin-film crystalline silicon solar cells obtained by separation of a porous silicon sacrificial layer,” in Proceedings of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, pp. 1272–1277, Vienna, Austria, 1998.
  5. T. Kunz, I. Burkert, M. Grosch, M. Scheffler, and R. Auer, “Spatial uniformity of large-area silicon layers (43×43 cm22) grown by convection-assisted chemical vapor deposition,” in Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conversion, pp. 1620–1623, Waikoloa, Hawaii, USA, May 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43 μm-thick crystalline Si solar cell from layer transfer using porous silicon,” Progress in Photovoltaics, vol. 20, no. 1, pp. 1–5, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J. H. Werner, R. Dassow, T. J. Rinke, J. R. Köhler, and R. B. Bergmann, “From polycrystalline to single crystalline silicon on glass,” Thin Solid Films, vol. 383, no. 1-2, pp. 95–100, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Kaufmann, Grundlegende Untersuchungen zum Nd:YAG-Laserstrahlfügen von Silizium für Komponenten der Optoelektronik, Meisenbach, Bamberg, Germany, 2002.
  9. U. Gösele, Q. Y. Tong, A. Schumacher et al., “Wafer bonding for microsystems technologies,” Sensors and Actuators A, vol. 74, no. 1–3, pp. 161–168, 1999. View at Publisher · View at Google Scholar
  10. L. Schaefer, H. Koch, K. Tangermann-Gerk et al., “Laser based joining of monocrystalline silicon foils,” Physics Procedia, vol. 5, pp. 503–510, 2010. View at Publisher · View at Google Scholar
  11. L. Schaefer, S. Roth, and M. Heßmann, “Anforderungen an den Prozess und die Systemtechnik beim Laserstrahlschweißen von Silizium Zusammenfassung Einleitung Eigenschaften und Verarbeitbarkeit von Silizium,” in Proceedings of the 13th Laser in der Elektronikproduktion und Feinwerktechnik, pp. 75–85, Fürth, Germany, 2010.
  12. R. Völkel and M. Zimmermann, “Homogenisierung von Laserstrahlen,” Photonik, pp. 76–79, 2006.
  13. K. Cvecek, M. Zimmermann, U. Urmoneit, T. Frick, M. Heßmann, and T. Kunz, “Thermisches Prozessieren dünner Siliziumsubstrate für die solare Energieerzeugung,” in Proceedings of the 15th Laser in der Elektronikproduktion und Feinwerktechnik, pp. 91–101, Fürth, Germany, 2012.
  14. T. Kunz, M. T. Hessmann, B. Meidel, and C. J. Brabec, “Micro-Raman mapping on layers for crystalline silicon thin-film solar cells,” Journal of Crystal Growth, vol. 314, no. 1, pp. 53–57, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semiconductor Science and Technology, vol. 11, no. 2, pp. 139–154, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Sarau, M. Becker, G. Andrä, and S. Christiansen, “Residual stress measurements in multicrystalline silicon bulk and thin film solar cells using micro-Raman spectroscopy,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference, pp. 2265–2270, Valencia, Spain, 2008.
  17. L. Eötvös, “Über den Zusammenhang der Oberflächenspannung der Flüssigkeiten mit ihrem Molekularvolumen,” Annalen der Physik und Chemie, vol. 27, pp. 448–459, 1886.
  18. S. R. Palit, “Thermodynamic interpretation of the eötvös constant,” Nature, vol. 177, no. 4521, p. 1180, 1956. View at Publisher · View at Google Scholar · View at Scopus