About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2013 (2013), Article ID 738063, 6 pages
http://dx.doi.org/10.1155/2013/738063
Research Article

H2O2 Treatment of Electrochemically Deposited Cu2O Thin Films for Enhancing Optical Absorption

Department of Engineering Physics, Electronics and Mechanics, Nagoya Institute of Technology, Nagoya 466-8555, Japan

Received 12 December 2012; Revised 22 January 2013; Accepted 22 January 2013

Academic Editor: Fahrettin Yakuphanoglu

Copyright © 2013 Ying Song and Masaya Ichimura. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Rühle, A. Y. Anderson, H.-N. Barad, et al., “All-oxide photovoltaics,” The Journal of Physical Chemistry Letters, vol. 3, no. 24, pp. 3755–3764, 2012.
  2. S. M. Chou, M. H. Hon, I. C. Leu, and Y. H. Lee, “Al-Doped ZnO/Cu2O heterojunction fabricated on (200) and (111)-orientated Cu2O substrates,” Journal of the Electrochemical Society, vol. 155, no. 11, pp. H923–H928, 2008.
  3. T. Minami, T. Miyata, K. Ihara, Y. Minamino, and S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO-Cu2O heterojunction devices,” Thin Solid Films, vol. 494, no. 1-2, pp. 47–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Ishizuka, K. Suzuki, Y. Okamoto, et al., “Polycrystalline n-ZnO/p-Cu2O heterojunctions grown by RF-magnetron sputtering,” Physica Status Solidi C, vol. 1, no. 4, pp. 1067–1070, 2004.
  5. K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, and T. Sakurai, “Thin film deposition of Cu2O and application for solar cells,” Solar Energy, vol. 80, no. 6, pp. 715–722, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Copper oxide transistor on copper wire for e-textile,” Applied Physics Letters, vol. 98, no. 19, Article ID 192102, 3 pages, 2011.
  7. T. Minami, Y. Nishi, T. Miyata, and J. I. Nomoto, “High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets,” Applied Physics Express, vol. 4, no. 6, Article ID 062301, 3 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Izaki, K. T. Mizuno, T. Shinagawa, M. Inaba, and A. Tasaka, “Photochemical construction of photovoltaic device composed of p-copper(I) oxide and n-zinc oxide,” Journal of the Electrochemical Society, vol. 153, no. 9, pp. C668–C672, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Izaki, T. Shinagawa, K. T. Mizuno, Y. Ida, M. Inaba, and A. Tasaka, “Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device,” Journal of Physics D, vol. 40, no. 11, pp. 3326–3329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochimica Acta, vol. 53, no. 5, pp. 2226–2231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Katayama, K. Ito, M. Matsuoka, and J. Tamaki, “Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition,” Journal of Applied Electrochemistry, vol. 34, no. 7, pp. 687–692, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. D. K. Zhang, Y. C. Liu, Y. L. Liu, and H. Yang, “The electrical properties and the interfaces of Cu2O/ZnO/ITO p-i-n heterojunction,” Physica B, vol. 351, no. 1-2, pp. 178–183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Ichimura and Y. Song, “Band alignment at the Cu2O/ZnO heterojunction,” Japanese Journal of Applied Physics, vol. 50, no. 5, Article ID 051002, 6 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Song and M. Ichimura, “Improvement of electrochemically deposited Cu2O/ZnO heterojunction solar cells by modulation of deposition current,” Japanese Journal of Applied Physics, vol. 51, no. 10, Article ID 10NC39, 5 pages, 2012.
  15. M. Izaki, “Effects of annealing on optical and electrical characteristics of p-type semiconductor copper (II) oxide electrodeposits,” Thin Solid Films, vol. 520, no. 7, pp. 2434–2437, 2012.
  16. M. Izaki, Y. Yamane, J. Sasano, T. Shinagawa, and M. Inoue, “Direct preparation of 1.35-eV-bandgap CuO:S film by chemical bath deposition,” Electrochemical and Solid-State Letters, vol. 14, no. 3, pp. D30–D32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Poizot, C. J. Hung, M. P. Nikiforov, E. W. Bohannan, and J. A. Switzer, “An electrochemical method for CuO thin film deposition from aqueous solution,” Electrochemical and Solid-State Letters, vol. 6, no. 2, pp. C21–C25, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Nakaoka, J. Ueyama, and K. Ogura, “Photoelectrochemical behavior of electrodeposited CuO and Cu2O thin films on conducting substrates,” Journal of the Electrochemical Society, vol. 151, no. 10, pp. C661–C665, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Dhanasekaran, T. Mahalingam, R. Chandramohan, J.-K. Rhee, and J. P. Chu, “Electrochemical deposition and characterization of cupric oxide thin films,” Thin Solid Films, vol. 520, no. 21, pp. 6608–6613, 2012.
  20. A. Nakamura and J. Temmyo, “Schottky contact on ZnO nano-columnar film with H2O2 treatment,” Journal of Applied Physics, vol. 109, no. 9, Article ID 093517, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Paracchino, J. C. Brauer, J.-E. Moser, E. Thimsen, and M. Graetzel, “Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy,” The Journal of Physical Chemistry C, vol. 116, no. 13, pp. 7341–7350, 2012.
  22. K. L. Hardee and A. J. Bard, “Semiconductor electrodes. X. Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions,” Journal of the Electrochemical Society, vol. 124, no. 2, pp. 215–224, 1977. View at Scopus