Review Article

Fabrication, Modification, and Emerging Applications of TiO2 Nanotube Arrays by Electrochemical Synthesis: A Review

Table 1

Brief summary of various synthesis generations of TNAs.

GenerationElectrolyte typePotentialAnodized timeMorphologyMain FactorReference

First generation: inorganic aqueous electrolytes (HF-based electrolyte)0.5 wt% HF 10–23 V≥20 minShort nanotubes
Length: 200–500 nm
Diameter: 10–100 nm
Wall thickness: 13–27 nm
Potential, electrolyte[13]
0.3–0.5 wt% HF + 1 M H3PO41–25 V2 hLength: 20–1000 nm
Diameter: 15–120 nm
Wall thickness: 20 nm
[32]
Second generation: buffered electrolytes (F-based electrolytes)1 M Na2SO4 + 0.1–1.0 wt% NaF20 V10 min–6 hRoughwall with rings
Length: 0.5–2.4 μm
Diameter: 100 nm
Wall thickness:  nm
Potential, pH, time [28]
1 M (NH4)2SO4 + 0.5 wt% NH4F20 V15–30 minLength: 0.5–1.0 μm
Diameter: 90–110 nm
[33]
Third generation: organic electrolyte containing F ions0.5 wt% NH4F + 0–5 wt% H2O in glycerol20 V13 hSmooth tube
Length: 7.0 μm
Diameter: 40 nm
Wall thickness:  nm
Potential, water content, time[17]
0.1–0.7 wt% NH4F + 2–3.5 wt% H2O in ethylene glycol60 V216 hUltra-long tube
Length: 1000 μm
Diameter:  nm
[22]
Fourth generation: fluoride-free electrolytes0.01–3 M HClO41 min15–60 VDisordered tubes
Length: 30 μm
Diameter: 20–40 nm
Wall thickness: 10 nm
Electrolyte, time[30]