About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2013 (2013), Article ID 834184, 7 pages
http://dx.doi.org/10.1155/2013/834184
Research Article

Synthesis and Characterization of a Gel-Type Electrolyte with Ionic Liquid Added for Dye-Sensitized Solar Cells

1Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
2Department of Industrial Design, National Taipei University of Technology, Taipei 10608, Taiwan
3Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
4Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan
5Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA

Received 23 November 2012; Accepted 24 December 2012

Academic Editor: Ho Chang

Copyright © 2013 Le-Yan Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737–739, 1991.
  2. A. Hagfeldt and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, vol. 95, no. 1, pp. 49–68, 1995.
  3. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables,” Progress in Photovoltaics, vol. 17, no. 1, pp. 85–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Nakade, S. Kambe, T. Kitamura, Y. Wada, and S. Yanagida, “Effects of lithium ion density on electron transport in nanoporous TiO2 electrodes,” Journal of Physical Chemistry B, vol. 105, no. 38, pp. 9150–9152, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. B. O'Regan and D. T. Schwartz, “Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL'NCS/CuSCN: initiation and potential mechanisms,” Chemistry of Materials, vol. 10, no. 6, pp. 1501–1509, 1998. View at Scopus
  6. K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, “Solid state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer,” Chemistry Letters, vol. 5, pp. 471–472, 1997. View at Scopus
  7. U. Bach, D. Lupo, P. Comte et al., “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature, vol. 395, no. 6702, pp. 583–585, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Spiekermann, G. Smestad, J. Kowalik, M. Grätzel, and L. M. Tolbert, “Poly(4-undecyl-2,2'-bithiophene) as a hole conductor in solid state dye sensitized titanium dioxide solar cells,” Synthetic Metals, vol. 121, no. 1–3, pp. 1603–1604, 2001. View at Scopus
  9. H. Usui, H. Matsui, N. Tanabe, and S. Yanagida, “Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 97–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Xia, F. Li, C. Huang, J. Zhai, and L. Jiang, “Improved stability quasi-solid-state dye-sensitized solar cell based on polyether framework gel electrolytes,” Solar Energy Materials and Solar Cells, vol. 90, no. 7-8, pp. 944–952, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Ren, Z. Zhang, S. Fang, M. Yang, and S. Cai, “Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells,” Solar Energy Materials and Solar Cells, vol. 71, no. 2, pp. 253–259, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. G. P. Kalaignan, M. S. Kang, and Y. S. kang, “Effects of compositions on properties of PEO-KI-I2 salts polymer electrolytes for DSSC,” Solid State Ionics, vol. 177, no. 11-12, pp. 1091–1097, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Yang, C. H. Zhou, S. Xu et al., “Improved stability of quasi-solid-state dye-sensitized solar cell based on poly (ethylene oxide)-poly (vinylidene fluoride) polymer-blend electrolytes,” Journal of Power Sources, vol. 185, no. 2, pp. 1492–1498, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Wu, P. Li, S. Hao, H. Yang, and Z. Lan, “A polyblend electrolyte (PVP/PEG+KI+I2) for dye-sensitized nanocrystalline TiO2 solar cells,” Electrochimica Acta, vol. 52, no. 17, pp. 5334–5338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, and J. Lin, “The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells,” Materials Chemistry and Physics, vol. 110, no. 1, pp. 38–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Saikia, C. C. Han, and Y. W. Chen-Yang, “Influence of polymer concentration and dyes on photovoltaic performance of dye-sensitized solar cell with P(VdF-HFP)-based gel polymer electrolyte,” Journal of Power Sources, vol. 185, no. 1, pp. 570–576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Suryanarayanan, K. M. Lee, W. H. Ho, H. C. Chen, and K. C. Ho, “A comparative study of gel polymer electrolytes based on PVDF-HFP and liquid electrolytes, containing imidazolinium ionic liquids of different carbon chain lengths in DSSCs,” Solar Energy Materials and Solar Cells, vol. 91, no. 15-16, pp. 1467–1471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Capiglia, Y. Saito, H. Yamamoto, H. Kageyama, and P. Mustarelli, “Transport properties and microstructure of gel polymer electrolytes,” Electrochimica Acta, vol. 45, no. 8, pp. 1341–1345, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Kang, W. Li, X. Wang et al., “Gel polymer electrolytes based on a novel quaternary ammonium salt for dye-sensitized solar cells,” Journal of Applied Electrochemistry, vol. 34, no. 3, pp. 301–304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. D. K. Cha and S. M. Park, “Electrochemical characterization of polyethylene glycols as solid polymer electrolytes,” Journal of Electroanalytical Chemistry, vol. 459, no. 1, pp. 135–144, 1998. View at Scopus
  21. C. Zafer, K. Ocakoglu, C. Ozsoy, and S. Icli, “Dicationic bis-imidazolium molten salts for efficient dye sensitized solar cells: synthesis and photovoltaic properties,” Electrochimica Acta, vol. 54, no. 24, pp. 5709–5714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Cheng, W. Wang, T. Lan et al., “Electrochemical characterization and photovoltaic performance of the binary ionic liquid electrolyte of 1-methyl-3-propylimidazolium iodide and 1-ethyl-3-methylimidazolium tetrafluoroborate for dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A, vol. 212, no. 2-3, pp. 147–152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Cheng, T. Lan, W. Wang et al., “Improved dye-sensitized solar cells by composite ionic liquid electrolyte incorporating layered titanium phosphate,” Solar Energy, vol. 84, no. 5, pp. 854–859, 2010. View at Publisher · View at Google Scholar · View at Scopus