About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2013 (2013), Article ID 916849, 9 pages
http://dx.doi.org/10.1155/2013/916849
Research Article

Kinetic Modeling for Microwave-Enhanced Degradation of Methylene Blue Using Manganese Oxide

1Department of Safety, Health, and Environmental Engineering, Ming Chi University of Technology, 84 Gung-Juan Road, Taishan, New Taipei 24301, Taiwan
2School of Public Health, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
3Department of Soil and Environmental Science, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan

Received 19 September 2012; Revised 13 December 2012; Accepted 13 December 2012

Academic Editor: Jafar Soltan

Copyright © 2013 Wen-Hui Kuan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Zhang, X. Zhou, X. Guo, X. Song, and X. Liu, “Investigation on the degradation of acid fuchsin induced oxidation by MgFe2O4 under microwave irradiation,” Journal of Molecular Catalysis A, vol. 335, no. 1-2, pp. 31–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Wainwright, D. A. Phoenix, L. Rice, S. M. Burrow, and J. Waring, “Increased cytotoxicity and phototoxicity in the methylene blue series via chromophore methylation,” Journal of Photochemistry and Photobiology B, vol. 40, no. 3, pp. 233–239, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Zhang, T. Oyama, S. Horikoshi, H. Hidaka, J. Zhao, and N. Serpone, “Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight,” Solar Energy Materials and Solar Cells, vol. 73, no. 3, pp. 287–303, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Matsuda, J. Zheng, D. K. Qing, A. Takatsu, and K. Kato, “In situ absorption spectra and adsorbed species of methylene blue on glass/water interfaces by slab optical waveguide spectroscopy,” Applied Spectroscopy, vol. 57, no. 1, pp. 100–103, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. N. Chowdhury, M. S. Azam, M. Aktaruzzaman, and A. Rahim, “Oxidative and antibacterial activity of Mn3O4,” Journal of Hazardous Materials, vol. 172, no. 2-3, pp. 1229–1235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Tang, Z. Zou, J. Yin, and J. Ye, “Photocatalytic degradation of methylene blue on CaIn2O4 under visible light irradiation,” Chemical Physics Letters, vol. 382, no. 1-2, pp. 175–179, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Marún, L. Daniel Conde, and L. Steven Suib, “Catalytic oligomerization of methane via microwave heating,” Journal of Physical Chemistry A, vol. 103, no. 22, pp. 4332–4340, 1999. View at Scopus
  8. N. Moloto, S. Mpelane, L. M. Sikhwivhilu, and S. S. Ray, “Optical and morphological properties of ZnO- and TiO2-derived nanostructures synthesized via a microwave-assisted hydrothermal method,” International Journal of Photoenergy, vol. 2012, Article ID 189069, 6 pages, 2012. View at Publisher · View at Google Scholar
  9. E. T. Thostenson and T. W. Chou, “Microwave processing: fundamentals and applications,” Composites Part A, vol. 30, no. 9, pp. 1055–1071, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. D. A. C. Stuerga and P. Gaillard, “Microwave athermal effects in chemistry: a myth's autopsy. Part I: historical background and fundamentals of wave-matter interaction,” Journal of Microwave Power and Electromagnetic Energy, vol. 31, no. 2, pp. 87–100, 1996. View at Scopus
  11. K. A. Malinger, Y. S. Ding, S. Sithambaram, L. Espinal, S. Gomez, and S. L. Suib, “Microwave frequency effects on synthesis of cryptomelane-type manganese oxide and catalytic activity of cryptomelane precursor,” Journal of Catalysis, vol. 239, no. 2, pp. 290–298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Sandin, M. L. Swanstein, and E. Wellner, “A fast and parallel route to cyclic isothioureas and guanidines with use of microwave-assisted chemistry,” Journal of Organic Chemistry, vol. 69, no. 5, pp. 1571–1580, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Forrez, M. Carballa, G. Fink et al., “Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor,” Water Research, vol. 45, no. 4, pp. 1763–1773, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. K. M. Parida, S. Sahu, K. H. Reddy, and P. C. Sahoo, “A kinetic, thermodynamic, and mechanistic approach toward adsorption of methylene blue over water-washed manganese nodule leached residues,” Industrial and Engineering Chemistry Research, vol. 50, no. 2, pp. 843–848, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. L. Suib, “Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials,” Journal of Materials Chemistry, vol. 18, no. 14, pp. 1623–1631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Minakshi, “Alkaline-earth oxide modified MnO2 cathode: enhanced performance in an aqueous rechargeable battery,” Industrial and Engineering Chemistry Research, vol. 50, no. 14, pp. 8792–8795, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Rauf, M. A. Meetani, A. Khaleel, and A. Ahmed, “Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS,” Chemical Engineering Journal, vol. 157, no. 2-3, pp. 373–378, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Liu, Y. Yu, Z. Liu, S. Zuo, and B. Li, “AgBr-coupled TiO2: a visible heterostructured photocatalyst for degrading dye pollutants,” International Journal of Photoenergy, vol. 2012, Article ID 254201, 7 pages, 2012. View at Publisher · View at Google Scholar
  19. P. Luo, Y. Zhao, B. Zhang, J. Liu, Y. Yang, and J. Liu, “Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes,” Water Research, vol. 44, no. 5, pp. 1489–1497, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Mohamed and E. S. Aazam, “Synthesis and characterization of CeO2-SiO2 nanoparticles by microwave-assisted irradiation method for photocatalytic oxidation of methylene blue dye,” International Journal of Photoenergy, vol. 2012, Article ID 928760, 9 pages, 2012. View at Publisher · View at Google Scholar
  21. M. Zaied, S. Peulon, N. Bellakhal, B. Desmazières, and A. Chaussé, “Studies of N-demethylation oxidative and degradation of methylene blue by thin layers of birnessite electrodeposited onto SnO2,” Applied Catalysis B, vol. 101, no. 3-4, pp. 441–450, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. W. H. Kuan and Y. C. Chan, “pH-dependent mechanisms of methylene blue reacting with tunneled manganese oxide pyrolusite,” Journal of Hazardous Materials, vol. 239-240, pp. 152–159, 2012.
  23. M. X. Zhu, Z. Wang, and L. Y. Zhou, “Oxidative decolorization of methylene blue using pelagite,” Journal of Hazardous Materials, vol. 150, no. 1, pp. 37–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. V. R. K. Murthy, T. A. Prasada Rao, and J. Sobhanadri, “Dielectric properties of some dyes in the radio-frequency region,” Journal of Physics D, vol. 10, no. 17, article 013, pp. 2405–2409, 1977. View at Publisher · View at Google Scholar · View at Scopus
  25. W. M. Haynes and D. R. Lide, CRC Handbook of Chemistry Physics, Taylor & Francis, London, UK, 91st edition, 2010.
  26. W. Zhang, H. L. Tay, S. S. Lim, Y. Wang, Z. Zhong, and R. Xu, “Supported cobalt oxide on MgO: highly efficient catalysts for degradation of organic dyes in dilute solutions,” Applied Catalysis B, vol. 95, no. 1-2, pp. 93–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. W. H. Kuan, C. Y. Chen, and C. Y. Hu, “Removal of methylene blue from water by γ-MnO2,” Water Science and Technology, vol. 64, pp. 899–903, 2011.
  28. W. H. Kuan, S. L. Lo, and M. K. Wang, “Modeling and electrokinetic evidences on the processes of the Al(III) sorption continuum in SiO2(s) suspension,” Journal of Colloid and Interface Science, vol. 272, no. 2, pp. 489–497, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Zhang, W. R. Chen, and C. H. Huang, “Kinetic modeling of oxidation of antibacterial agents by manganese oxide,” Environmental Science and Technology, vol. 42, no. 15, pp. 5548–5554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Stumm, Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, John Wiley and Sons, New York, NY, USA, 1992.
  31. A. T. Stone, “Reductive dissolution of manganese(III/IV) oxides by substituted phenols,” Environmental Science and Technology, vol. 21, no. 10, pp. 979–988, 1987. View at Scopus
  32. W. Sung and J. J. Morgan, “Oxidative removal of Mn(II) from solution catalysed by the γ-FeOOH (lepidocrocite) surface,” Geochimica et Cosmochimica Acta, vol. 45, no. 12, pp. 2377–2383, 1981. View at Scopus
  33. M. E. Davis and R. J. Davis, Fundamentals of Chemical Reaction Engineering, McGraw-Hill Higher Education, New York, NY, USA, 2003.
  34. C. Doornkamp and V. Ponec, “The universal character of the Mars and Van Krevelen mechanism,” Journal of Molecular Catalysis A, vol. 162, no. 1-2, pp. 19–32, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Sriskandakumar, N. Opembe, C. H. Chen, A. Morey, C. King'Ondu, and S. L. Suib, “Green decomposition of organic dyes using octahedral molecular sieve manganese oxide catalysts,” Journal of Physical Chemistry A, vol. 113, no. 8, pp. 1523–1530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Lachheb, E. Puzenat, A. Houas et al., “Photocatalytic degradation of various types of dyes (alizarin S, crocein orange G, methyl red, congo red, methylene blue) in water by UV-irradiated titania,” Applied Catalysis B, vol. 39, no. 1, pp. 75–90, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. M. A. Lemus, T. López, S. Recillas et al., “Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid using nanocrystalline cryptomelane composite catalysts,” Journal of Molecular Catalysis A, vol. 281, no. 1-2, pp. 107–112, 2008. View at Publisher · View at Google Scholar · View at Scopus