About this Journal Submit a Manuscript Table of Contents
International Journal of Partial Differential Equations
Volume 2014 (2014), Article ID 137470, 12 pages
http://dx.doi.org/10.1155/2014/137470
Research Article

An Efficient Method for Time-Fractional Coupled Schrödinger System

1Department of Applied Mathematics, School of Mathematical Sciences, University of Guilan, P.O. Box 1914, Rasht, Iran
2Department of Applied Mathematics, Faculty of Mathematical Sciences, Islamic Azad University, Lahijan Branch, P.O. Box 1616, Lahijan, Iran

Received 30 January 2014; Revised 1 June 2014; Accepted 15 June 2014; Published 15 July 2014

Academic Editor: Athanasios N. Yannacopoulos

Copyright © 2014 Hossein Aminikhah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We present a new technique to obtain the solution of time-fractional coupled Schrödinger system. The fractional derivatives are considered in Caputo sense. The proposed scheme is based on Laplace transform and new homotopy perturbation method. To illustrate the power and reliability of the method some examples are provided. The results obtained by the proposed method show that the approach is very efficient and simple and can be applied to other partial differential equations.

1. Introduction

The intuitive idea of fractional order calculus is as old as integer order calculus. It can be observed from a letter that was written by Leibniz to ĹHôpital. The fractional order calculus is a generalization of the integer order calculus to a real or complex number. Fractional differential equations are used in many branches of sciences, mathematics, physics, chemistry, and engineering. Applications of fractional calculus and fractional-order differential equations include dielectric relaxation phenomena in polymeric materials [1], transport of passive tracers carried by fluid flow in a porous medium in groundwater hydrology [2], transport dynamics in systems governed by anomalous diffusion [3, 4], and long-time memory in financial time series [5] and so on [6, 7]. In particular, recently, much attention has been paid to the distributed-order differential equations and their applications in engineering fields that both integer-order systems and fractional-order systems are special cases of distributed-order systems. The reader may refer to [810].

Several schemes have been developed for the numerical solution of differential equations. The homotopy perturbation method was proposed by He [11] in 1999. This method has been used by many mathematicians and engineers to solve various functional equations. Homotopy method was further developed and improved by He and applied to nonlinear oscillators with discontinuities [12], nonlinear wave equations [13], and boundary value problems [14]. It can be said that He’s homotopy perturbation method is a universal one and is able to solve various kinds of nonlinear functional equations. For example, it was applied to nonlinear Schrödinger equations [15], to nonlinear equations arising in heat transfer [16], and to other equations [1720]. In this method, the solution is considered to be an infinite series which usually converges rapidly to exact solutions. In this paper we introduce a new form of homotopy perturbation and Laplace transform methods by extending the idea of [21].

We extend the homotopy perturbation and Laplace transform method to solve the time-fractional coupled Schrödinger system. The nonlinear time-fractional coupled Schrödinger partial differential system is as [22] where are unknown functions, are real constants, and is a parameter describing the order of the fractional Caputo derivative. and are arbitrary (smooth) nonlinear real functions. Nonlinear Schrödinger system is one of the canonical nonlinear equations in physics, arising in various fields such as nonlinear optics, plasma physics, and surface waves [23].

This paper is organized as follows. In Section 2, we recall some basic definitions and results dealing with the fractional calculus and Laplace transform which are later used in this paper. In Section 3 the homotopy perturbation method is described. The basic idea behind the new method is illustrated in Section 4. Finally, in Section 5, the application of homotopy perturbation and Laplace transform method for solving time-fractional coupled Schrödinger systems are presented.

2. Preliminaries and Notations

Some basic definitions and properties of the fractional calculus theory are used in this paper.

Definition 1. A real function , , is said to be in the space , , if there exists a real number such that , where and it is said to be in the space if and only if , . Clearly if .

Definition 2. The left-sided Riemann-Liouville fractional integral operator of order , of a function , , is defined as follows: where is the well-known Gamma function.

Some of the most important properties of operator , for , , and are as follows:

Definition 3. Amongst a variety of definitions for fractional order derivatives, Caputo fractional derivative has been used [24, 25] as it is suitable for describing various phenomena, since the initial values of the function and its integer order derivatives have to be specified, so Caputo fractional derivative of function is defined as where , , , and .

In this paper, we have considered time-fractional coupled Schrödinger system, where the unknown function is assumed to be a causal function of fractional derivatives which are taken in Caputo sense as follows.

Definition 4. The Caputo time-fractional derivative operator of order is defined as

Definition 5. The Laplace transform of a function , is defined as where can be either real or complex. The Laplace transform of the Caputo derivative is defined as

Lemma 6. If , , and , then we have where is the inverse Laplace transform.

The Mittag-Leffler function plays a very important role in the fractional differential equations and in fact it was introduced by Mittag-Leffler in 1903 [26]. The Mittag-Leffler function with is defined by the following series representation: where . For , (9) becomes The key result that indicates why Mittag-Leffler functions are so important in fractional calculus is the following theorem. It essentially states that the eigenfunctions of Caputo differential operators may be expressed in terms of Mittag-Leffler functions.

Theorem 7 (see [27]). If and , then we have

3. The Homotopy Perturbation Method

For the convenience of the reader, we will first present a brief account of homotopy perturbation method. Let us consider the following differential equation: with boundary conditions where is a general differential operator, is a boundary operator, is a known analytic function, and is the boundary of the domain .

The operator can be generally divided into two parts and , where is linear, while is nonlinear. Therefore, (12) can be written as follows: By using homotopy technique, one can construct a homotopy which satisfies which is equivalent to where is an embedding parameter and is an initial guess approximation of (12) which satisfies the boundary conditions. Clearly, we have Thus, the changing process of from to is just that of from to . In topology this is called deformation and and are called homotopic. If, the embedding parameter , is considered as a small parameter, applying the classical perturbation technique, we can naturally assume that the solution of (15) and (16) can be given as a power series in ; that is, According to homotopy perturbation method, the approximation solution of (12) can be expressed as a series of the power of ; that is, The convergence of series (19) has been proved by He in his paper [11]. It is worth noting that the major advantage of homotopy perturbation method is that the perturbation equation can be freely constructed in many ways by homotopy in topology and the initial approximation can also be freely selected. Moreover, the construction of the homotopy for the perturbed problem plays a very important role for obtaining desired accuracy [28].

4. Basic Ideas of the Homotopy Perturbation and Laplace Transform Method

To illustrate the basic ideas of this method, we consider the general form of a system of nonlinear fractional partial differential equations: with initial conditions where are operators and are known analytical functions. The operators can be divided into two parts, and , where are the linear operators and are nonlinear operators. Therefore, (20) can be rewritten as By the new homotopy perturbation method [29], we construct the following homotopies: or equivalently where is an embedding parameter and are initial approximations for the solution of (20). Clearly, we have from (23) and (24) By applying Laplace transform on both sides of (24), we have Using (7), we derive or By applying inverse Laplace transform on both sides of (28), we have According to the homotopy perturbation method, we can first use the embedding parameter as a small parameter and assume that the solution of (29) can be written as a power series in as follows: where , , are functions which should be determined. Suppose that the initial approximation of the solutions of (20) is in the following form: where , for , , are functions which must be computed. Substituting (30) and (31) into (29) and equating terms with identical powers of we obtain the following set of equations:

Now if we solve these equations in such a way that , then (32) yield Therefore the exact solution is obtained by

5. Example

To illustrate the power and reliability of the method for the time-fractional coupled Schrödinger system some examples are provided. The results reveal that the method is very effective and simple.

Example 8. Consider the following linear time-fractional coupled Schrödinger system: subject to the following initial conditions: where and are of the form with the exact solutions where .
To solve (35) by the homotopy perturbation and Laplace transform method, we construct the following homotopy: Applying the Laplace transform on both sides of (39), we have or The inverse Laplace transform of (41) and the initial conditions lead us to Suppose that the solution is expanded as (30); substituting (30) into (42), collecting the same powers of , and equating each coefficient of to zero yield
Assume , . Solving the above equations, for , , leads to the result By the vanishing of , the coefficients , are determined to be Therefore, the solutions of (35) are which are the exact solutions. Now, if we put in (46), we obtain , which is the exact solution of the given coupled Schrödinger system (35).

Example 9. Consider the following nonlinear time-fractional coupled Schrödinger system: subject to the following initial conditions: where and have the following form: with the exact solutions where .
To solve (47) by the homotopy perturbation and Laplace transform method, we construct the following homotopy: Applying Laplace transform on both sides of (51), we have or The inverse Laplace transform of (53) and the initial conditions lead us to Suppose that the solution is expanded as (30); substituting (30) into (54), collecting the same powers of , and equating each coefficient of to zero yield
Assume , . Solving the above equations, for , , leads to the result By the vanishing of , the coefficients , are determined to be Therefore, the exact solutions of the system of (47) can be expressed as Now, if we put in (58), we obtain , which is the exact solution of the given coupled Schrödinger system (47).

Example 10. Consider the following nonlinear time-fractional coupled Schrödinger system: subject to the following initial conditions: where and have the following form: with the exact solutions where .
To solve (59) by the LTNHPM, we construct the following homotopy: Applying Laplace transform on both sides of (63), we have or The inverse Laplace transform (65) and the initial conditions , , lead us to Suppose that the solution is expanded as (30); substituting (30) into (66), collecting the same powers of , and equating each coefficient of to zero yield
Assume , . Solving the above equations, for , , we obtain the result By the vanishing of , the coefficients , are determined to be Therefore, the solutions of (59) are Now, if we put in (70), we obtain , which is the exact solution of the given coupled Schrödinger system (59).

6. Conclusion

In this paper, we have introduced a combination of Laplace transform and homotopy perturbation methods for solving fractional Schrödinger equations which we called homotopy perturbation and Laplace transform method. In this scheme, the solution considered to be a Taylor series which converges rapidly to the exact solution of the nonlinear equation. As shown in the three examples of this paper, a clear conclusion can be drawn from the results that the homotopy perturbation and Laplace transform method provide an efficient method to handle nonlinear partial differential equations of fractional order. The computations associated with the examples were performed using Maple 13.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. E. Reyes-Melo, J. Martinez-Vega, C. Guerrero-Salazar, and U. Ortiz-Mendez, “Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials,” Journal of Applied Polymer Science, vol. 98, no. 2, pp. 923–935, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Schumer, D. A. Benson, M. M. Meerschaert, and S. W. Wheatcraft, “Eulerian derivation of the fractional advection-dispersion equation,” Journal of Contaminant Hydrology, vol. 48, no. 1-2, pp. 69–88, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. B. I. Henry and S. L. Wearne, “Existence of Turing instabilities in a two-species fractional reaction-diffusion system,” SIAM Journal on Applied Mathematics, vol. 62, no. 3, pp. 870–887, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. R. Metzler and J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach,” Physics Reports, vol. 339, no. 1, pp. 1–77, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  5. S. Picozzi and B. J. West, “Fractional Langevin model of memory in financial markets,” Physical Review E, vol. 66, Article ID 046118, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. A. Ansari, A. Refahi Sheikhani, and S. Kordrostami, “On the generating function ext+yϕt and its fractional calculus,” Central European Journal of Physics, vol. 11, no. 10, pp. 1457–1462, 2013. View at Google Scholar
  7. A. Ansari, A. R. Sheikhani, and H. S. Najafi, “Solution to system of partial fractional differential equations using the fractional exponential operators,” Mathematical Methods in the Applied Sciences, vol. 35, no. 1, pp. 119–123, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. H. Saberi Najafi, A. Refahi Sheikhani, and A. Ansari, “Stability analysis of distributed order fractional differential equations,” Abstract and Applied Analysis, vol. 2012, Article ID 175323, 12 pages, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  9. A. R. Sheikhani, H. S. Najafi, F. Mehrdoust, and A. Ansari, “Analytic study on linear systems of distributed order fractional differential equations,” Le Matematiche, vol. 67, no. 2, pp. 3–13, 2012. View at Google Scholar · View at MathSciNet
  10. H. Aminikhah, A. R. Sheikhani, and H. Rezazadeh, “Stability analysis of distributed order fractional Chen system,” The Scientific World Journal, vol. 2013, Article ID 645080, 13 pages, 2013. View at Publisher · View at Google Scholar
  11. J. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  12. J. He, “The homotopy perturbation method nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 287–292, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  13. J. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 26, no. 3, pp. 695–700, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  14. J. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87–88, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. J. Biazar and H. Ghazvini, “Exact solutions for non-linear Schrödinger equations by He's homotopy perturbation method,” Physics Letters A, vol. 366, no. 1-2, pp. 79–84, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. D. D. Ganji, “The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer,” Physics Letters A, vol. 355, no. 4-5, pp. 337–341, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  17. Z. Odibat and S. Momani, “Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order,” Chaos, Solitons & Fractals, vol. 36, no. 1, pp. 167–174, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  18. H. Aminikhah and J. Biazar, “A new HPM for ordinary differential equations,” Numerical Methods for Partial Differential Equations, vol. 26, no. 2, pp. 480–489, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. A. Yildirim and H. Koçak, “Homotopy perturbation method for solving the space-time fractional advection-dispersion equation,” Advances in Water Resources, vol. 32, no. 12, pp. 1711–1716, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. E. Berberler and A. Yildirim, “He's homotopy perturbation method for solving the shock wave equation,” Applicable Analysis, vol. 88, no. 7, pp. 997–1004, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  21. H. Aminikhah and M. Hemmatnezhad, “An efficient method for quadratic Riccati differential equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 4, pp. 835–839, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  22. L. Wei, X. Zhang, S. Kumar, and A. Yildirim, “A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrodinger system,” Computers & Mathematics with Applications, vol. 64, no. 8, pp. 2603–2615, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  23. D. J. Griffiths, Introduction to Quantum Mechanics: Pearson New International Edition, Pearson Education, 2013.
  24. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Application of Fractional Differential Equations, Elsevier, New York, NY, USA, 2006. View at MathSciNet
  25. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974, reprinted in 2006. View at MathSciNet
  26. M. G. Mittag-Leffler, “Sur la nouvelle fonction Eax,” Comptes Rendus de l'Académie des Sciences, vol. 137, pp. 554–558, 1903. View at Google Scholar
  27. K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, vol. 2004 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  28. T. Öziş and A. Yildirim, “Traveling wave solution of Korteweg-de vries equation using He's homotopy perturbation method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 2, pp. 239–242, 2007. View at Google Scholar · View at Scopus
  29. H. Aminikhah, “An analytical approximation for solving nonlinear Blasius equation by NHPM,” Numerical Methods for Partial Differential Equations, vol. 26, no. 6, pp. 1291–1299, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus