About this Journal Submit a Manuscript Table of Contents
International Journal of Pediatrics
Volume 2012 (2012), Article ID 129328, 11 pages
http://dx.doi.org/10.1155/2012/129328
Review Article

The Experience of Being Born: A Natural Context for Learning to Suckle

1Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
2Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
3Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
4Molecular Medicine and Translational Science, Wake Forest School of Medicine, Winston Salem, NC 27157, USA

Received 31 March 2012; Accepted 10 July 2012

Academic Editor: Chantal Lau

Copyright © 2012 Jeffrey R. Alberts and April E. Ronca. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. F. R. Prechtl, Continuity of Neural Functions from Prenatal to Postnatal Life, Clinics in Developmental Medicine, 1984.
  2. A. Peiper, Cerebral Function in Infancy and Childhood, Consultants Bureau, New York, NY, USA, 1949.
  3. S. M. Barlow, “Central pattern generation involved in oral and respiratory control for feeding in the term infant,” Current Opinion in Otolaryngology and Head and Neck Surgery, vol. 17, no. 3, pp. 187–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Bateson and M. Mameli, “The innate and the acquired: useful clusters or a residual distinction from folk biology?” Developmental Psychobiology, vol. 49, no. 8, pp. 818–831, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Mameli and P. Bateson, “An evaluation of the concept of innateness,” Philosophical Transactions of the Royal Society: Biological Sciences, vol. 366, no. 1563, pp. 436–443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Thelen, “Motor development: a new synthesis,” American Psychologist, vol. 50, no. 2, pp. 79–95, 1995. View at Scopus
  7. E. Thelen and D. Corbetta, “Microdevelopment and dynamic systems: applications to infant motor development,” in MicroDevelopment: Transition Processes in Development and Learning, N. Granott and J. Parziale, Eds., pp. 59–79, Cambridge University Press, Cambridge, Mass, USA, 2002.
  8. J. P. Hailman, “How an instinct is learned,” Scientific American, vol. 221, no. 6, pp. 98–106, 1969.
  9. M. S. Blumberg, Basic Instinct: The Genesis of Behavior, Thunder's Mouth Press, New York, NY, USA, 2005.
  10. S. J. Arnold, “The microevolution of feeding behavior,” in Foraging Behavior: Ecological, Ethological and Psychological Approaches, A. Kamil and T. Sargent, Eds., pp. 409–453, Garland Press, New York, NY, USA, 1981.
  11. F. A. Beach, “The descent of instinct,” Psychological Review, vol. 62, no. 6, pp. 401–410, 1955. View at Publisher · View at Google Scholar · View at Scopus
  12. A. E. Ronca, C. A. Lamkin, and J. R. Alberts, “Maternal contributions to sensory experience in the fetal and newborn rat (Rattus norvegicus),” in Journal of Comparative Psychology, vol. 107, pp. 61–74, 1993.
  13. H. J. Polan and M. A. Hofer, “Maternally directed orienting behaviors of newborn rats,” Developmental Psychobiology, vol. 34, no. 4, pp. 269–279, 1999.
  14. M. A. Hofer, H. Shair, and P. Singh, “Evidence that maternal ventral skin substances promote suckling in infant rats,” Physiology and Behavior, vol. 17, no. 1, pp. 131–136, 1976. View at Publisher · View at Google Scholar · View at Scopus
  15. M. H. Teicher and E. M. Blass, “Suckling in newborn rats: eliminated by nipple lavage, reinstated by pup saliva,” Science, vol. 193, no. 4251, pp. 422–425, 1976. View at Scopus
  16. P. E. Pedersen and E. M. Blass, “Prenatal and postnatal determinants of the 1st suckling episode in albino rats,” Developmental Psychobiology, vol. 15, no. 4, pp. 349–355, 1982. View at Scopus
  17. E. M. Blass and P. E. Pedersen, “Surgical manipulation of the uterine environment of rat fetuses,” Physiology and Behavior, vol. 25, no. 6, pp. 993–995, 1980. View at Publisher · View at Google Scholar · View at Scopus
  18. R. A. Abel, A. E. Ronca, and J. R. Alberts, “Perinatal stimulation facilitates suckling onset in newborn rats,” Developmental Psychobiology, vol. 32, no. 2, pp. 91–99, 1998.
  19. A. E. Ronca and J. R. Alberts, “Simulated uterine contractions facilitate fetal and newborn respiratory behavior in rats,” Physiology and Behavior, vol. 58, no. 5, pp. 1035–1041, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. A. E. Ronca and J. R. Alberts, “Cutaneous induction of breathing in perinatal rats,” Psychobiology, vol. 23, no. 4, pp. 261–269, 1995. View at Scopus
  21. J. P. Mortola, “Dynamics of breathing in newborn mammals,” Physiological Reviews, vol. 67, no. 1, pp. 187–243, 1987. View at Scopus
  22. G. S. Dawes, “Foetal blood-gas homeostasis during development,” Proceedings of the Royal Society of Medicine, vol. 61, no. 11, pp. 1227–1231, 1968. View at Scopus
  23. G. C. Liggins, “The fetus and birth,” in Reproduction in Mammals, C. R. Austin and R. V. Short, Eds., Cambridge University Press, New York, NY, USA, 1982.
  24. S. L. Adamson, B. S. Richardson, and J. Homan, “Initiation of pulmonary gas exchange by fetal sheep in utero,” Journal of Applied Physiology, vol. 62, no. 3, pp. 989–998, 1987. View at Scopus
  25. C. M. Kuhn and S. M. Schanberg, “Responses to maternal separation: mechanisms and mediators,” International Journal of Developmental Neuroscience, vol. 16, no. 3-4, pp. 261–270, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. C. M. Kuhn, S. M. Schanberg, T. Field et al., “Tactile-kinesthetic stimulation effects on sympathetic and adrenocortical function in preterm infants,” Journal of Pediatrics, vol. 119, no. 3, pp. 434–440, 1991. View at Scopus
  27. H. Lagercrantz and P. Bistoletti, “Catecholamine release in the newborn infant at birth,” Pediatric Research, vol. 11, no. 8, pp. 889–893, 1977. View at Scopus
  28. H. Lagercrantz and T. A. Slotkin, “The “stress” of being born,” Scientific American, vol. 254, no. 4, pp. 100–107, 1986. View at Scopus
  29. K. Hagnevik, H. Lagercrantz, and B. A. Sjoqvist, “Establishment of functional residual capacity in infants delivered vaginally and by elective cesarean section,” Early Human Development, vol. 27, no. 1-2, pp. 103–110, 1991. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Otamiri, G. Berg, T. Ledin, I. Leijon, and H. Lagercrantz, “Delayed neurological adaptation in infants delivered by elective cesarean section and the relation to catecholamine levels,” Early Human Development, vol. 26, no. 1, pp. 51–60, 1991. View at Publisher · View at Google Scholar · View at Scopus
  31. R. H. Usher, A. C. Allen, and F. H. McLean, “Risk of respiratory distress syndrome related to gestational age, route of delivery, and maternal diabetes,” American Journal of Obstetrics and Gynecology, vol. 111, no. 6, pp. 826–832, 1971. View at Scopus
  32. C. M. Jones and F. C. Greiss, “The effect of labor on maternal and fetal circulating catecholamines,” American Journal of Obstetrics and Gynecology, vol. 144, no. 2, pp. 149–153, 1982. View at Scopus
  33. C. T. Jones, “Circulating catecholamines in the fetus, their origin, actions and significance,” in Biogenic Amines in Development, H. Parvez and S. Parvez, Eds., pp. 63–68, Elsevier, Amsterdam, The Netherlands, 1980.
  34. A. E. Ronca, R. A. Abel, and J. R. Alberts, “Perinatal stimulation and adaptation of the neonate,” Acta Paediatrica (Supplement), vol. 416, pp. 8–15, 1996. View at Scopus
  35. G. Faxelius, K. Hagnevik, H. Lagercrantz, B. Lundell, and L. Irestedt, “Catecholamine surge and lung function after delivery,” Archives of Disease in Childhood, vol. 58, no. 4, pp. 262–266, 1983. View at Scopus
  36. L. Irestedt, H. Lagercrantz, and P. Belfrage, “Causes and consequences of maternal and fetal sympathoadrenal activation during parturition,” Acta Obstetricia et Gynecologica Scandinavica (Supplement), vol. 118, pp. 111–115, 1984. View at Scopus
  37. A. Van den Berg, R. M. Van Elburg, H. P. Van Geijn, and W. P. F. Fetter, “Neonatal respiratory morbidity following elective caesarean section in term infants: a 5-year retrospective study and a review of the literature,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 98, no. 1, pp. 9–13, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Faxelius, K. Bremme, and H. Lagercrantz, “An old problem revisited—hyaline membrane disease and cesarean section,” European Journal of Pediatrics, vol. 139, no. 2, pp. 121–124, 1982. View at Scopus
  39. I. A. Buhimschi, C. S. Buhimschi, M. Pupkin, and C. P. Weiner, “Beneficial impact of term labor: nonenzymatic antioxidant reserve in the human fetus,” American Journal of Obstetrics and Gynecology, vol. 189, no. 1, pp. 181–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Otamiri, G. Berg, T. Ledin, I. Leijon, and B. Nilsson, “Influence of elective cesarian section and breech delivery on neonatal neurological condition,” Early Human Development, vol. 23, no. 1, pp. 53–66, 1990. View at Scopus
  41. H. R. Kim, K. Y. Jung, S. Y. Kim, K. O. Ko, Y. M. Lee, and J. M. Kim, “Delivery modes and neonatal EEG: spatial pattern analysis,” Early Human Development, vol. 75, no. 1-2, pp. 35–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. R. H. Porter and J. Winberg, “Unique salience of maternal breast odors for newborn infants,” Neuroscience and Biobehavioral Reviews, vol. 23, no. 3, pp. 439–449, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Varendi, R. H. Porter, and J. Winberg, “Does the newborn baby find the nipple by smell?” The Lancet, vol. 344, no. 8928, pp. 989–990, 1994. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Doucet, R. Soussignan, P. Sagot, and B. Schaal, “An overlooked aspect of the human breast: areolar glands in relation with breastfeeding pattern, neonatal weight gain, and the dynamics of lactation,” Early Human Development, vol. 88, no. 2, pp. 119–128, 2012.
  45. H. Varendi, R. H. Porter, and J. Winberg, “Attractiveness of amniotic fluid odor: evidence of prenatal olfactory learning?” Acta Paediatrica, vol. 85, no. 10, pp. 1223–1227, 1996. View at Scopus
  46. H. Varendi, K. Christensson, R. H. Porter, and J. Winberg, “Soothing effect of amniotic fluid smell in newborn infants,” Early Human Development, vol. 51, no. 1, pp. 47–55, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Varendi, R. H. Porter, and J. Winberg, “The effect of labor on olfactory exposure learning within the first postnatal hour,” Behavioral Neuroscience, vol. 116, no. 2, pp. 206–211, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. R. A. Abel, Perinatal experience facilitates early behavioral organization and adaptation in newborn rats (Rattus norvegicus) [Ph.D. thesis], Indiana University, Bloomington, Ind, USA, 2000.
  49. A. R. Fuchs, “Uterine activity in late pregnancy and during parturition in the rat,” Biology of Reproduction, vol. 1, no. 4, pp. 344–353, 1969. View at Scopus
  50. T. Higuchi, K. Uchide, K. Honda, and H. Negoro, “Pelvic neurectomy abolishes the fetus-expulsion reflex and induces dystocia in the rat,” Experimental Neurology, vol. 96, no. 2, pp. 443–455, 1987. View at Scopus
  51. A. E. Ronca and J. R. Alberts, “Sensory stimuli associated with gestation and parturition evoke cardiac and behavioral responses in fetal rats,” Psychobiology, vol. 22, no. 4, pp. 270–282, 1994. View at Scopus
  52. B. Schaal, T. Hummel, and R. Soussignan, “Olfaction in the fetal and premature infant: functional status and clinical implications,” Clinics in Perinatology, vol. 31, no. 2, pp. 261–285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. P. M. Bingham, “Deprivation and dysphagia in premature infants,” Journal of Child Neurology, vol. 24, no. 6, pp. 743–749, 2009. View at Publisher · View at Google Scholar · View at Scopus