About this Journal Submit a Manuscript Table of Contents
International Journal of Pediatrics
Volume 2012 (2012), Article ID 931597, 7 pages
http://dx.doi.org/10.1155/2012/931597
Clinical Study

Chloride Balance in Preterm Infants during the First Week of Life

1Neonatology and NICU, GHSR, CHR, BP 350, 97448 Saint Pierre Cedex, Réunion, France
2Centre d’Etudes Périnatales de l’Océan Indien, Centre d’Investigation Clinique et d’Epidémiologie Clinique (CIC-EC) CHR, 97410 Saint Pierre, Réunion, France
3Department of Neonatology, AP-HP, Groupe Hospitalier Cochin-Saint-Vincent de Paul, 75014 Paris, France
4Paris Descartes University, 75270 Paris, France
5NICU, Department of Paediatrics, University of Dijon, 21034 Dijon Cedex, France

Received 21 November 2011; Revised 15 December 2011; Accepted 15 December 2011

Academic Editor: Alan Richard Spitzer

Copyright © 2012 Silvia Iacobelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Sulyok, “Renal aspect of sodium metabolism in the fetus and neonate.,” in Nephrology and Fluid/Electrolyte Physiology. Neonatology Questions and Controversies, W. Oh, J. P. Guignard, and S. Baumgart, Eds., pp. 23–53, Elsevier, Philadelphia, Pa, USA, 1th edition, 2008.
  2. L. Baraton, P. Y. Ancel, C. Flamant, J. L. Orsonneau, D. Darmaun, and J. C. Rozé, “Impact of changes in serum sodium levels on 2-year neurologic outcomes for very preterm neonates,” Pediatrics, vol. 124, no. 4, pp. e655–e661, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. R. W. I. Cooke, “Factors associated with periventricular haemorrhage in very low birthweight infants,” Archives of Disease in Childhood, vol. 56, no. 6, pp. 425–431, 1981. View at Scopus
  4. L. I. Worthley, “Strong ion difference: a new paradigm or new clothes for the Acid-base emperor,” Critical Care and Resuscitation, vol. 1, no. 2, p. 214, 1999.
  5. P. A. Stewart, “Modern quantitative acid-base chemistry,” Canadian Journal of Physiology and Pharmacology, vol. 61, no. 12, pp. 1444–1461, 1983. View at Scopus
  6. S. Skellett, A. Mayer, A. Durward, S. M. Tibby, and I. A. Murdoch, “Chasing the base deficit: hyperchloraemic acidosis following 0.9% saline fluid resuscitation,” Archives of Disease in Childhood, vol. 83, no. 6, pp. 514–516, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Iacobelli, F. Bonsante, A. Vintéjoux, and J. B. Gouyon, “Standardized parenteral nutrition in preterm infants: early impact on fluid and electrolyte balance,” Neonatology, vol. 98, no. 1, pp. 84–90, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. M. Lorenz, L. I. Kleinman, G. Ahmed, and K. Markarian, “Phases of fluid and electrolyte homeostasis in the extremely low birth weight infant,” Pediatrics, vol. 96, no. 3 I, pp. 484–489, 1995. View at Scopus
  9. L. A. Papile, J. Burstein, R. Burstein, and H. Koffler, “Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm,” Journal of Pediatrics, vol. 92, no. 4, pp. 529–534, 1978. View at Scopus
  10. L. S. De Vries, P. Eken, and L. M. S. Dubowitz, “The spectrum of leukomalacia using cranial ultrasound,” Behavioural Brain Research, vol. 49, no. 1, pp. 1–6, 1992. View at Scopus
  11. C. Cans, “Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers,” Developmental Medicine and Child Neurology, vol. 42, no. 12, pp. 816–824, 2000. View at Publisher · View at Google Scholar
  12. G. Choker and J. B. Gouyon, “Diagnosis of acute renal failure in very preterm infants,” Biology of the Neonate, vol. 86, no. 3, pp. 212–216, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. G. M. Day, I. C. Radde, J. W. Balfe, and G. W. Chance, “Electrolyte abnormalities in very low birthweight infants,” Pediatric Research, vol. 10, no. 5, pp. 522–526, 1976. View at Scopus
  14. R. N. Roy, G. W. Chance, and I. C. Radde, “Late hyponatremia in very low birthweight infants (<1.3 kilograms),” Pediatric Research, vol. 10, no. 5, pp. 526–531, 1976. View at Scopus
  15. A. Green and S. Keffler, “Neonatal biochemical reference ranges,” in Roberton’s Textbook of Neonatology, J. M. Rennie and N. R. C. Roberton, Eds., pp. 1408–1414, Churchill Livingstone, 3rd edition, 1999.
  16. S. Groh-Wargo, A. Ciaccia, and J. Moore, “Neonatal metabolic acidosis: effect of chloride from normal saline flushes,” Journal of Parenteral and Enteral Nutrition, vol. 12, no. 2, pp. 159–161, 1988. View at Scopus
  17. O. Peters, S. Ryan, L. Matthew, K. Cheng, and J. Lunn, “Randomised controlled trial of acetate in preterm neonates receiving parenteral nutrition,” Archives of Disease in Childhood, vol. 77, no. 1, pp. F12–F15, 1997. View at Scopus
  18. C. E. Richards, M. Drayton, H. Jenkins, and T. J. Peters, “Effect of different chloride infusion rates on plasma base excess during neonatal parenteral nutrition,” Acta Paediatrica, vol. 82, no. 8, pp. 678–682, 1993. View at Scopus
  19. H. N. Hulter, “Effects and interrelationships of PTH, Ca2+, vitamin D, and Pi in acid-base homeostasis,” The American Journal of Physiology, vol. 248, no. 6, pp. F739–752, 1985. View at Scopus
  20. S. Perrott, L. Dodds, and M. Vincer, “A population-based study of prognostic factors related to major disability in very preterm survivors,” Journal of Perinatology, vol. 23, no. 2, pp. 111–116, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. P. Jadhav, P. S. Parimi, and S. C. Kalhan, “Parenteral amino acid and metabolic acidosis in premature infants,” Journal of Parenteral and Enteral Nutrition, vol. 31, no. 4, pp. 278–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Bustos Lozano, C. Orbea Gallardo, S. Fernández De Miguel, M. C. Muñoz Labián, M. López Maestro, and M. Moral Pumarega, “Determinants of uremia elevation in the first days of life in premature infants born at less than 30 weeks of gestation,” Anales de Pediatria, vol. 59, no. 6, pp. 559–564, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Gawlowski, N. Aladangady, and P. G. Coen, “Hypernatraemia in preterm infants born at less than 27 weeks gestation,” Journal of Paediatrics and Child Health, vol. 42, no. 12, pp. 771–774, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. M. Perlman, V. Moore, M. J. Siegel, and J. Dawson, “Is chloride depletion an important contributing cause of death in infants with bronchopulmonary dysplasia?” Pediatrics, vol. 77, no. 2, pp. 212–216, 1986. View at Scopus
  25. M. M. Heinly and S. J. Wassner, “The effect of isolated chloride depletion on growth and protein turnover in young rats,” Pediatric Nephrology, vol. 8, no. 5, pp. 555–560, 1994. View at Scopus