About this Journal Submit a Manuscript Table of Contents
International Journal of Pediatrics
Volume 2013 (2013), Article ID 872596, 13 pages
http://dx.doi.org/10.1155/2013/872596
Review Article

What Do We Know of Childhood Exposures to Metals (Arsenic, Cadmium, Lead, and Mercury) in Emerging Market Countries?

1Office of Science, National Center for Environmental Health and Agency for Toxic Substances and Disease Registry, 4770 Buford Highway, Atlanta, GA 30341, USA
2Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, GA 30341, USA

Received 12 September 2012; Revised 17 November 2012; Accepted 17 November 2012

Academic Editor: Namik Yaşar Özbek

Copyright © 2013 Lindsey M. Horton et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Järup, “Hazards of heavy metal contamination,” British Medical Bulletin, vol. 68, pp. 167–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Kapaj, H. Peterson, K. Liber, and P. Bhattacharya, “Human health effects from chronic arsenic poisoning—a review,” Journal of Environmental Science and Health A, vol. 41, no. 10, pp. 2399–2428, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. National Research Council (NRC), Toxicological Effects of Methylmercury, National Academy Press, Washington, DC, USA, 2000.
  4. D. C. Bellinger, “Lead,” Pediatrics, vol. 113, no. 4, pp. 1016–1022, 2004. View at Scopus
  5. L. Yáñez, D. Ortiz, J. Calderón et al., “Overview of human health and chemical mixtures: problems facing developing countries,” Environmental Health Perspectives, vol. 110, no. 6, pp. 901–909, 2002. View at Scopus
  6. G. Ziemacki, G. Viviano, and F. Merli, “Heavy metals: sources and environmental presence,” Annali dell'Istituto Superiore di Sanita, vol. 25, no. 3, pp. 531–535, 1989. View at Scopus
  7. P. Barrios, “Rotterdam convention on hazardous chemicals: a meaningful step toward environmental protection,” Georgetown International Environmental Law Review, vol. 16, no. 4, pp. 679–762, 2004.
  8. Organization for Economic Cooperation and Development (OECD), OECD Environmental Outlook to 2030: Summary in English, OECD, Paris, France, 2008, http://www.oecd.org/dataoecd/29/33/40200582.pdf.
  9. L. Trasande, R. I. Massey, J. DiGangi, K. Geiser, A. I. Olanipekun, and L. Gallagher, “How developing nations can protect children from hazardous chemical exposures while sustaining economic growth,” Health Affairs, vol. 30, no. 12, pp. 2400–2409, 2011. View at Publisher · View at Google Scholar
  10. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile For Arsenic, U.S. Department of Health and Human Services, Atlanta, Ga, USA, 2007.
  11. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Cadmium, U.S. Department of Health and Human Services, Atlanta, Ga, USA, 2008.
  12. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Lead, U.S. Department of Health and Human Services, Atlanta, Ga, USA, 2007.
  13. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Mercury, U.S. Department of Health and Human Services, Atlanta, Ga, USA, 1999.
  14. H. Ahsan, M. Perrin, A. Rahman et al., “Associations between drinking water and urinary arsenic levels and skin lesions in Bangladesh,” Journal of Occupational and Environmental Medicine, vol. 42, no. 12, pp. 1195–1201, 2000. View at Scopus
  15. R. L. Calderon, E. Hudgens, X. Chris, D. Schreinemachers, and D. J. Thomas, “Excretion of arsenic in urine as a function of exposure to arsenic in drinking water,” Environmental Health Perspectives, vol. 107, no. 8, pp. 663–667, 1999. View at Scopus
  16. International Agency for Research on Cancer (IARC), “IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 84. Some Drinking-water Disinfectants and Contaminants, including Arsenic,” Summary of Data Reported and Evaluation, 2007, http://monographs.iarc.fr/ENG/Monographs/vol84/volume84.pdf.
  17. M. M. Meza, M. J. Kopplin, J. L. Burgess, and A. J. Gandolfi, “Arsenic drinking water exposure and urinary excretion among adults in the Yaqui Valley, Sonora, Mexico,” Environmental Research, vol. 96, no. 2, pp. 119–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. L. Shalat, H. M. Solo-Gabriele, L. E. Fleming et al., “A pilot study of children's exposure to CCA-treated wood from playground equipment,” Science of the Total Environment, vol. 367, no. 1, pp. 80–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Kwon, H. Zhang, Z. Wang et al., “Arsenic on the hands of children after playing in playgrounds,” Environmental Health Perspectives, vol. 112, no. 14, pp. 1375–1380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Horiguchi, E. Oguma, S. Sasaki et al., “Comprehensive study of the effects of age, iron deficiency, diabetes mellitus, and cadmium burden on dietary cadmium absorption in cadmium-exposed female Japanese farmers,” Toxicology and Applied Pharmacology, vol. 196, no. 1, pp. 114–123, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. E. Mortensen, L. Y. Wong, and J. D. Osterloh, “Smoking status and urine cadmium above levels associated with subclinical renal effects in U.S. adults without chronic kidney disease,” International Journal of Hygiene and Environmental Health, vol. 214, no. 4, pp. 305–310, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Needleman, “Lead poisoning,” Annual Review of Medicine, vol. 55, pp. 209–222, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. World Health Organization, “Childhood Lead Poisoning,” 2010, http://www.who.int/ceh/publications/childhoodpoisoning/en/index.html.
  24. J. B. Hursh, M. R. Greenwood, T. W. Clarkson, J. Allen, and S. Demuth, “The effect of ethanol on the fate of mercury vapor inhaled by man,” Journal of Pharmacology and Experimental Therapeutics, vol. 214, no. 3, pp. 520–526, 1980. View at Scopus
  25. International Agency for Research on Cancer (IARC), “IARC Monographs on the evaluation of carcinogenic risks to humans,” in Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry, vol. 58, 1993, http://monographs.iarc.fr/ENG/Monographs/vol58/index.php.
  26. United States Environmental Protection Agency (USEPA), Methylmercury Exposure, United States Environmental Protection Agency (USEPA), Washington, DC, USA, 2012, http://www.epa.gov/hg/exposure.htm.
  27. World Health Organization, Arsenic and Arsenic Compounds, vol. 224 of Environmental Health Criteria, World Health Organization, Geneva, Switzerland, 2nd edition, 2001, http://www.inchem.org/documents/ehc/ehc/ehc224.htm.
  28. K. L. Caldwell, R. L. Jones, C. P. Verdon, J. M. Jarrett, S. P. Caudill, and J. D. Osterloh, “Levels of urinary total and speciated arsenic in the US population: National Health and Nutrition Examination Survey 2003-2004,” Journal of Exposure Science and Environmental Epidemiology, vol. 19, no. 1, pp. 59–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. G. F. Nordberg and M. Nordberg, “Biological monitoring of cadmium,” in Biological Monitoring of Toxic Metals, T. W. Clarkson, L. Friberg, G. F. Nordberg, and P. R. Sager, Eds., pp. 151–168, Plenum Press, New York, New York, USA, 2001.
  30. H. A. Roels, P. Hoet, and D. Lison, “Usefulness of biomarkers of exposure to inorganic mercury, lead, or cadmium in controlling occupational and environmental risks of nephrotoxicity,” Renal Failure, vol. 21, no. 3-4, pp. 251–262, 1999. View at Scopus
  31. M. E. Cianciola, D. Echeverria, M. D. Martin, H. Vasken Aposian, and J. S. Woods, “Epidemiologic assessment of measures used to indicate low-level exposure to mercury vapor (Hg°),” Journal of Toxicology and Environmental Health A, vol. 52, no. 1, pp. 19–33, 1997. View at Scopus
  32. A. Kingman, T. Albertini, and L. J. Brown, “Mercury concentrations in urine and whole blood associated with amalgam exposure in a US military population,” Journal of Dental Research, vol. 77, no. 3, pp. 461–471, 1998. View at Scopus
  33. J. Stein, T. Schettler, D. Wallinga, and M. Valenti, “In harm's way: toxic threats to child development,” Journal of Developmental and Behavioral Pediatrics, vol. 23, supplement 1, pp. S13–S22, 2002. View at Scopus
  34. T. A. Jusko, C. R. Henderson, B. P. Lanphear, D. A. Cory-Slechta, P. J. Parsons, and R. L. Canfield, “Blood lead concentration <10 μg/dL and child intelligence at 6 years of age,” Environmental Health Perspectives, vol. 116, no. 2, pp. 243–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. American Academy of Pediatrics and Committee on Environmental Health, “Lead exposure in children: prevention, detection, and management,” Pediatrics, vol. 116, no. 4, pp. 1036–1046, 2005.
  36. G. Pershagen, “The carcinogenicity of arsenic,” Environmental Health Perspectives, vol. 40, pp. 93–100, 1981. View at Scopus
  37. C. de Burbure, J. P. Buchet, A. Leroyer et al., “Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: evidence of early effects and multiple interactions at environmental exposure levels,” Environmental Health Perspectives, vol. 114, no. 4, pp. 584–590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. A. M. Sakuma, E. M. de Capitani, B. R. Figueiredo et al., “Arsenic exposure assessment of children living in a lead mining area in Southeastern Brazil,” Cadernos de Saude Publica, vol. 26, no. 2, pp. 391–398, 2010. View at Scopus
  39. L. Xu, K. Yokoyama, Y. Tian et al., “Decrease in birth weight and gestational age by arsenic among the newborn in Shanghai, China,” Japanese Journal of Public Health, vol. 58, no. 2, pp. 89–95, 2011. View at Scopus
  40. S. Ahamed, M. Kumar Sengupta, A. Mukherjee et al., “Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga plain, India: a severe danger,” Science of the Total Environment, vol. 370, no. 2-3, pp. 310–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Chakraborti, S. C. Mukherjee, S. Pati et al., “Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger?” Environmental Health Perspectives, vol. 111, no. 9, pp. 1194–1201, 2003. View at Scopus
  42. O. S. von Ehrenstein, S. Poddar, Y. Yuan et al., “Children's intellectual function in relation to arsenic exposure,” Epidemiology, vol. 18, no. 1, pp. 44–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. H. de la Fuente, D. Portales-Pérez, L. Baranda et al., “Effect of arsenic, cadmium and lead on the induction of apoptosis of normal human mononuclear cells,” Clinical and Experimental Immunology, vol. 129, no. 1, pp. 69–77, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. J. L. Rosado, D. Ronquillo, K. Kordas et al., “Arsenic exposure and cognitive performance in Mexican Schoolchildren,” Environmental Health Perspectives, vol. 115, no. 9, pp. 1371–1375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. M. E. Moreno, L. C. Acosta-Saavedra, D. Meza-Figueroa et al., “Biomonitoring of metal in children living in a mine tailings zone in Southern Mexico: a pilot study,” International Journal of Hygiene and Environmental Health, vol. 213, no. 4, pp. 252–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. G. A. Soto-Peña, A. L. Luna, L. Acosta-Saavedra et al., “Assessment of lymphocyte subpopulations and cytokine secretion in children exposed to arsenic,” The FASEB Journal, vol. 20, no. 6, pp. 779–781, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. A. P. Pineda-Zavaleta, G. García-Vargas, V. H. Borja-Aburto et al., “Nitric oxide and superoxide anion production in monocytes from children exposed to arsenic and lead in region Lagunera, Mexico,” Toxicology and Applied Pharmacology, vol. 198, no. 3, pp. 283–290, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Méndez-Gómez, G. G. García-Vargas, L. López-Carrillo et al., “Genotoxic effects of environmental exposure to arsenic and lead on children in Region Lagunera, Mexico,” Annals of the New York Academy of Sciences, vol. 1140, pp. 358–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Trejo-Acevedo, F. Díaz-Barriga, L. Carrizales et al., “Exposure assessment of persistent organic pollutants and metals in Mexican children,” Chemosphere, vol. 74, no. 7, pp. 974–980, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Li, X. Huo, J. Liu, L. Peng, W. Li, and X. Xu, “Assessment of cadmium exposure for neonates in Guiyu, an electronic waste pollution site of China,” Environmental Monitoring and Assessment, vol. 177, no. 1–4, pp. 343–351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. L. L. Tian, Y. C. Zhao, X. C. Wang et al., “Effects of gestational cadmium exposure on pregnancy outcome and development in the offspring at age 4.5 years,” Biological Trace Element Research, vol. 132, no. 1–3, pp. 51–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. L. Zhang, Y. C. Zhao, J. X. Wang et al., “Effect of environmental exposure to cadmium on pregnancy outcome and fetal growth: a study on healthy pregnant women in China,” Journal of Environmental Science and Health A, vol. 39, no. 9, pp. 2507–2515, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Raghunath, R. M. Tripathi, V. N. Sastry, and T. M. Krishnamoorthy, “Heavy metals in maternal and cord blood,” Science of the Total Environment, vol. 250, no. 1–3, pp. 135–141, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. H. J. Barton, “Advantages of the use of deciduous teeth, hair, and blood analysis for lead and cadmium bio-monitoring in children. A study of 6-year-old children from Krakow (Poland),” Biological Trace Element Research, vol. 143, no. 2, pp. 637–658, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. C. S. Moon, J. M. Paik, C. S. Choi, D. H. Kim, and M. Ikeda, “Lead and cadmium levels in daily foods, blood and urine in children and their mothers in Korea,” International Archives of Occupational and Environmental Health, vol. 76, no. 4, pp. 282–288, 2003. View at Scopus
  56. C. M. Lin, P. Doyle, D. Wang, Y. H. Hwang, and P. C. Chen, “Does prenatal cadmium exposure affect fetal and child growth?” Occupational and Environmental Medicine, vol. 68, pp. 641–646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. G. R. Costa de Almeida, C. Umbelino de Freitas, F. Barbosa, J. E. Tanus-Santos, and R. F. Gerlach, “Lead in saliva from lead-exposed and unexposed children,” Science of the Total Environment, vol. 407, no. 5, pp. 1547–1550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Oliveira da Costa Mattos Rde, E. C. Xavier Jr., H. R. Domingos Mainenti et al., “Evaluation of calcium excretion in Brazilian infantile and young population environmentally exposed to lead,” Human and Experimental Toxicology, vol. 28, no. 9, pp. 567–575, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Qin, M. Zhou, H. Q. Bao, and Y. Liang, “Relation between auditory brainstem response and low-level lead exposure during period of fetus in infants,” Chinese Journal of Clinical Rehabilitation, vol. 8, no. 36, pp. 8411–8413, 2004. View at Scopus
  60. D. Tang, T. Y. Li, J. J. Liu et al., “Effects of prenatal exposure to coal-burning pollutants on children's development in China,” Environmental Health Perspectives, vol. 116, no. 5, pp. 674–679, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Li, X. Xu, K. Wu et al., “Monitoring of lead load and its effect on neonatal behavioral neurological assessment scores in Guiyu, an electronic waste recycling town in China,” Journal of Environmental Monitoring, vol. 10, no. 10, pp. 1233–1238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Wang, L. Huang, X. Zhou, G. Xu, and Q. Shi, “Blood lead levels of both mothers and their newborn infants in the middle part of China,” International Journal of Hygiene and Environmental Health, vol. 207, no. 5, pp. 431–436, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. W. Gao, Z. Li, R. B. Kaufmann et al., “Blood lead levels among children aged 1 to 5 years in Wuxi City, China,” Environmental Research, vol. 87, no. 1, pp. 11–19, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Lin, X. Wang, I. T. S. Yu et al., “Environmental lead pollution and elevated blood lead levels among children in a rural area of China,” American Journal of Public Health, vol. 101, no. 5, pp. 834–841, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. S. M. Zhang, Y. H. Dai, X. H. Xie, Z. Y. Fan, Z. W. Tan, and Y. F. Zhang, “Surveillance of childhood blood lead levels in 14 cities of China in 2004–2006,” Biomedical and Environmental Sciences, vol. 22, no. 4, pp. 288–296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. Q. Wang, H. H. Zhao, J. W. Chen et al., “Adverse health effects of lead exposure on children and exploration to internal lead indicator,” Science of the Total Environment, vol. 407, no. 23, pp. 5986–5992, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. Q. Wang, H. H. Zhao, J. W. Chen et al., “δ-Aminolevulinic acid dehydratase activity, urinary δ-aminolevulinic acid concentration and zinc protoporphyrin level among people with low level of lead exposure,” International Journal of Hygiene and Environmental Health, vol. 213, no. 1, pp. 52–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Srivastava, P. K. Mehrotra, S. P. Srivastava, I. Tandon, and M. K. J. Siddiqui, “Blood lead and zinc in pregnant women and their offspring in intrauterine growth retardation cases,” Journal of Analytical Toxicology, vol. 25, no. 6, pp. 461–465, 2001. View at Scopus
  69. A. B. Patel, H. Belsare, and A. Banerjee, “Feeding practices and blood lead levels in infants in Nagpur, India,” International Journal of Occupational and Environmental Health, vol. 17, no. 1, pp. 24–30, 2011. View at Scopus
  70. A. Roy, H. Hu, D. C. Bellinger et al., “Predictors of blood lead in children in Chennai, India (2005-2006),” International Journal of Occupational and Environmental Health, vol. 15, no. 4, pp. 351–359, 2009. View at Scopus
  71. M. Ahamed, M. J. Akhtar, S. Verma, A. Kumar, and M. K. Siddiqui, “Environmental lead exposure as a risk for childhood aplastic anemia,” Bioscience Trends, vol. 5, no. 1, pp. 38–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Hegde, M. Sridhar, D. R. Bolar, S. Arehalli Bhaskar, and M. B. Sanghavi, “Relating tooth- and blood-lead levels in children residing near a zinc-lead smelter in India,” International Journal of Paediatric Dentistry, vol. 20, no. 3, pp. 186–192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Ahamed, S. Verma, A. Kumar, and M. K. J. Siddiqui, “Delta-aminolevulinic acid dehydratase inhibition and oxidative stress in relation to blood lead among urban adolescents,” Human and Experimental Toxicology, vol. 25, no. 9, pp. 547–553, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Albalak, G. Noonan, S. Buchanan et al., “Blood lead levels and risk factors for lead poisoning among children in Jakarta, Indonesia,” Science of the Total Environment, vol. 301, no. 1–3, pp. 75–85, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. C. M. Chaparro, R. Fornes, L. M. Neufeld, G. Tena Alavez, R. Eguía-Líz Cedillo, and K. G. Dewey, “Early umbilical cord clamping contributes to elevated blood lead levels among infants with higher lead exposure,” The Journal of Pediatrics, vol. 151, no. 5, pp. 506–512, 2007. View at Scopus
  76. H. Hu, M. M. Téllez-Rojo, D. Bellinger et al., “Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development,” Environmental Health Perspectives, vol. 114, no. 11, pp. 1730–1735, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Kordas, A. S. Ettinger, D. C. Bellinger et al., “A Dopamine Receptor (DRD2) but Not Dopamine Transporter (DAT1) gene polymorphism is associated with neurocognitive development of mexican preschool children with lead exposure,” Journal of Pediatrics, vol. 159, no. 4, pp. 638–643, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. R. O. Wright, H. Hu, E. K. Silverman et al., “Apolipoprotein E genotype predicts 24-month bayley scales infant development score,” Pediatric Research, vol. 54, no. 6, pp. 819–825, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Gomaa, H. Hu, D. Bellinger et al., “Maternal bone lead as an independent risk factor for fetal neurotoxicity: a prospective study,” Pediatrics, vol. 110, no. 1, part 1, pp. 110–118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. M. R. Hopkins, A. S. Ettinger, M. Hernández-Avilla et al., “Variants in iron metabolism genes predict higher blood lead levels in young children,” Environmental Health Perspectives, vol. 116, no. 9, pp. 1261–1266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. M. M. Téllez-Rojo, D. C. Bellinger, C. Arroyo-Quiroz et al., “Longitudinal associations between blood lead concentrations lower than 10 μg/dL and neurobehavioral development in environmentally exposed children in Mexico City,” Pediatrics, vol. 118, no. 2, pp. e323–e330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. A. S. Ettinger, M. M. Téllez-Rojo, C. Amarasiriwardena et al., “Effect of breast milk lead on infant blood lead levels at 1 month of age,” Environmental Health Perspectives, vol. 112, no. 14, pp. 1381–1385, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. L. Schnaas, S. J. Rothenberg, M. F. Flores et al., “Blood lead secular trend in a cohort of children in Mexico City (1987–2002),” Environmental Health Perspectives, vol. 112, no. 10, pp. 1110–1115, 2004. View at Scopus
  84. M. Rubio-Andrade, F. Valdes-Perezgasga, J. Alonso, J. L. Rosado, M. E. Cebrian, and G. G. Garcia-Vargas, “Follow-up study on lead exposure in children living in a smelter community in northern Mexico,” Environmental Health, vol. 10, no. 1, article 66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. N. A. Pelallo-Martínez, C. A. Ilizaliturri-Hernández, G. Espinosa-Reyes, L. Carrizales-Yáñez, and D. J. González-Mille, “Assessment of exposure to lead in humans and turtles living in an industrial site in Coatzacoalcos Veracruz, Mexico,” Bulletin of Environmental Contamination and Toxicology, vol. 86, no. 6, pp. 642–645, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. W. Jedrychowski, F. P. Perera, J. Jankowski et al., “Very low prenatal exposure to lead and mental development of children in infancy and early childhood,” Neuroepidemiology, vol. 32, no. 4, pp. 270–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. W. Jedrychowski, F. Perera, J. Jankowski et al., “Prenatal low-level lead exposure and developmental delay of infants at age 6 months (Krakow inner city study),” International Journal of Hygiene and Environmental Health, vol. 211, no. 3-4, pp. 345–351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. D. Mielzyńska, E. Siwińska, L. Kapka, K. Szyfter, L. E. Knudsen, and D. F. Merlo, “The influence of environmental exposure to complex mixtures including PAHs and lead on genotoxic effects in children living in Upper Silesia, Poland,” Mutagenesis, vol. 21, no. 5, pp. 295–304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. Z. Ignasiak, T. Sławinska, K. Rozek, R. Malina, and B. B. Little, “Blood lead level and physical fitness of schoolchildren in the copper basin of south-western Poland: indirect effects through growth stunting,” Annals of Human Biology, vol. 34, no. 3, pp. 329–343, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. J. W. Choi and S. K. Kim, “Association between blood lead concentrations and body iron status in children,” Archives of Disease in Childhood, vol. 88, no. 9, pp. 791–792, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. H. Hwang, Y. Ko, C. D. Chiang et al., “Transition of cord blood lead level, 1985–2002, in the Taipei area and its determinants after the cease of leaded gasoline use,” Environmental Research, vol. 96, no. 3, pp. 274–282, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. C. M. Lin, P. Doyle, D. Wang, Y. H. Hwang, and P. C. Chen, “The role of essential metals in the placental transfer of lead from mother to child,” Reproductive Toxicology, vol. 29, no. 4, pp. 443–446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Y. Lin, Y. L. Leon Guo, P. C. Chen, J. H. Liu, H. C. Wu, and Y. H. Hwang, “Associations between petrol-station density and manganese and lead in the cord blood of newborns living in Taiwan,” Environmental Research, vol. 111, no. 2, pp. 260–265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. P.-C. Huang, P.-H. Su, H.-Y. Chen et al., “Childhood blood lead levels and intellectual development after ban of leaded gasoline in Taiwan: a 9-year prospective study,” Environment International, vol. 40, no. 1, pp. 88–96, 2012. View at Publisher · View at Google Scholar
  95. S. Bose-O'Reilly, B. Lettmeier, R. Matteucci Gothe, C. Beinhoff, U. Siebert, and G. Drasch, “Mercury as a serious health hazard for children in gold mining areas,” Environmental Research, vol. 107, no. 1, pp. 89–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. C. L. Hsiao, K. H. Wu, and K. S. Wan, “Effects of environmental lead exposure on T-helper cell-specific cytokines in children,” Journal of Immunotoxicology, vol. 8, no. 4, pp. 284–287, 2011. View at Publisher · View at Google Scholar
  97. B. Kirel, M. A. Akşit, and H. Bulut, “Blood lead levels of maternal-cord pairs, children and adults who live in a central urban area in Turkey,” Turkish Journal of Pediatrics, vol. 47, no. 2, pp. 125–131, 2005. View at Scopus
  98. G. Dikme, A. Arvas, and E. Gur, “The relationship between heavy metal exposure and chronic neurological diseases in children,” Acta Paediatrica, vol. 100, pp. 26–27, 2011. View at Publisher · View at Google Scholar
  99. J. F. Nyland, S. B. Wang, D. L. Shirley et al., “Fetal and maternal immune responses to methylmercury exposure: a cross-sectional study,” Environmental Research, vol. 111, no. 4, pp. 584–589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. E. O. Santos, I. M. de Jesus, V. D. M. Câmara et al., “Correlation between blood mercury levels in mothers and newborns in Itaituba, Pará State, Brazil,” Cadernos de Saude Publica, vol. 23, supplement 4, pp. S622–S629, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. Gao, C. H. Yan, Y. Tian et al., “Prenatal exposure to mercury and neurobehavioral development of neonates in Zhoushan City, China,” Environmental Research, vol. 105, no. 3, pp. 390–399, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. F. Öktem, M. K. Arslan, B. Dündar, N. Delibas, M. Gültepe, and I. E. Ilhan, “Renal effects and erythrocyte oxidative stress in long-term low-level lead-exposed adolescent workers in auto repair workshops,” Archives of Toxicology, vol. 78, no. 12, pp. 681–687, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. R. Costilla-Salazar, A. Trejo-Acevedo, D. Rocha-Amador, O. Gaspar-Ramírez, F. Díaz-Barriga, and I. N. Pérez-Maldonado, “Assessment of polychlorinated biphenyls and mercury levels in soil and biological samples from San Felipe, Nuevo Mercurio, Zacatecas, Mexico,” Bulletin of Environmental Contamination and Toxicology, vol. 86, no. 2, pp. 212–216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. W. Jȩdrychowski, F. Perera, V. Rauh et al., “Fish intake during pregnancy and mercury level in cord and maternal blood at delivery: an environmental study in Poland,” International Journal of Occupational Medicine and Environmental Health, vol. 20, no. 1, pp. 31–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. W. Jedrychowski, J. Jankowski, E. Flak et al., “Effects of prenatal exposure to mercury on cognitive and psychomotor function in one-year-old Infants: epidemiologic cohort study in Poland,” Annals of Epidemiology, vol. 16, no. 6, pp. 439–447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. Economy Watch, “Emerging Markets,” 2010, http://www.economywatch.com/world_economy/emerging-markets/.
  107. A. Mody, “What is an Emerging Market?” International Monetary Fund Working Paper, 2004, http://cdi.mecon.gov.ar/biblio/docelec/fmi/wp/wp04177.pdf.
  108. V. Kvint, “Define Emerging Markets Now,” 2008, http://www.forbes.com/2008/01/28/kvint-developing-countries-oped-cx_kv_0129kvint.html.
  109. R. Heakal, “What is an Emerging Market Economy?” 2009, Investopedia, http://www.investopedia.com/articles/03/073003.asp.
  110. Centers for Disease Control and Prevention (CDC), “Fourth National Report on Human Exposure to Environmental Chemicals,” Updated Tables. 2012, http://www.cdc.gov/exposurereport/.
  111. L. C. Miller and N. W. Hendrie, “Health of children adopted from China,” Pediatrics, vol. 105, no. 6, p. E76, 2000. View at Scopus
  112. J. C. Ng, J. P. Wang, B. Zheng et al., “Urinary porphyrins as biomarkers for arsenic exposure among susceptible populations in Guizhou province, China,” Toxicology and Applied Pharmacology, vol. 206, no. 2, pp. 176–184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. Z. Y. Zhao, L. Liang, X. Fan et al., “The role of modified citrus pectin as an effective chelator of lead in children hospitalized with toxic lead levels,” Alternative Therapies in Health and Medicine, vol. 14, no. 4, pp. 34–38, 2008. View at Scopus
  114. Centers for Disease Control and Prevention (CDC), “Elevated blood lead levels among internationally adopted children—United States, 1998,” Morbidity and Mortality Weekly Report, vol. 49, no. 5, pp. 97–100, 2000.
  115. D. Chakraborti, M. M. Rahman, K. Paul et al., “Arsenic calamity in the Indian subcontinent: what lessons have been learned?” Talanta, vol. 58, no. 1, pp. 3–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. M. M. Rahman, M. K. Sengupta, S. Ahamed et al., “The magnitude of arsenic contamination in groundwater and its health effects to the inhabitants of the Jalangi—one of the 85 arsenic affected blocks in West Bengal, India,” Science of the Total Environment, vol. 338, no. 3, pp. 189–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. W. Jedrychowski, F. Perera, J. Jankowski et al., “Fish consumption in pregnancy, cord blood mercury level and cognitive and psychomotor development of infants followed over the first three years of life. Krakow epidemiologic study,” Environment International, vol. 33, no. 8, pp. 1057–1062, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. Centers for Disease Control and Prevention (CDC), CDC Response to Advisory Committee on Childhood Lead Poisoning Prevention Recommendations in Level Lead Exposure Harms Children: A Renewed Call of Primary Prevention, CDC, Atlanta, Ga, USA, 2012, http://www.cdc.gov/nceh/lead/ACCLPP/CDC_Response_Lead_Exposure_Recs.pdf.
  119. Agency for Toxic Substances and Disease Registry (ATSDR), “Public Health Assessment Guidance Manual (2005 Update),” 2012, http://www.atsdr.cdc.gov/hac/phamanual/toc.html.